
(System modelling)

Joint Workshop on Standards for the Use of Models that Define the Data and Processes of Information Systems
April, 22-25, Bellevue, Washington, USA

SYSTEM MODELLING

PHYSICAL CONCEPTS, THEORETICAL ELEMENTS, DESCRIPTION LANGUAGE

Serge Savoysky
Docteur ès Sciences

 3 System Modelling

CONTENT

 EXECUTIVE SUMMARY 7

 PHYSICAL CONCEPTS (TIN FRAME) 11

1 General 11

2 Definitions of primary components of systems 11
2.1 General 11
2.2 System 12
2.2.1 General definitions 12
2.2.2 General case: physical system 12
2.2.3 Special case: information technology system 13
2.3 Functionality 14
2.3.1 Definition 14
2.3.2 Relations between functionalities: exchange of produces, interoperability 14
2.3.3 Relations between functionalities: translation of a functionality into another, portability 15
2.3.4 Interface 16
2.4 Device and produce 17

3 Design of heterogeneous components of a system 17
3.1 General 17
3.2 Analysis 18
3.2.1 General definitions 18
3.2.2 Morphology 18
3.2.3 Physiology 18
3.2.4 State of a component 19
3.2.5 Recursivity of morphology and physiology 19
3.3 Synthesis 20
3.4 Component typology 21
3.5 Component genealogy 22

 THEORETICAL ELEMENTS (GOLD FRAME) 23

1 Prolegomena 23

2 Primitive elements 25
2.1 Method and constructive principles 25
2.2 Fundamental space 25
2.2.1 General 25
2.2.2 Properties 26
2.2.3 Algebraic structures 27
2.2.4 Structures in classes 28
2.3 Substrate space 29
2.3.1 Purpose 29
2.3.2 Definitions 29
2.3.3 Properties of substrate space 30

3 Recursive elements 31
3.1 Method and constructional principles 31
3.2 Elements for morphological design 32
3.2.1 General 32
3.2.2 Produce model 32
3.2.3 Device model 33
3.2.4 Representation of fundamental properties 35
3.3 Elements for physiological design 36

Content

System Modelling 4

3.3.1 General 36
3.3.2 Command or Timing-operator 37
3.3.3 Temporal condition 38

4 Interoperability 38
4.1 Morphological consistency 38
4.2 Physiological consistency 39

5 Portability 39

6 Conclusion 40

 DESCRIPTION LANGUAGE (IRON FRAME) 43

1 General 43

2 Primary formalism (stone frame) 44
2.1 Objectives 44
2.2 General features 44
2.3 Primary notions 44
2.4 Compound notions 45
2.5 Primary rules 45

3 Specification of description languages 46

4 Production of languages 48
4.1 General 48
4.2 Rules of meta-production 48
4.3 Conformity criterion 49

 CONCLUSION 50

 APPENDIXES 54

I List of definitions 54

II Reviews and notes 57
II. 1 Category 57
II.1.1 Definition 57
II.1.2 Opposite category 58
II.1.3 Product of categories 58
II.1.4 Ordered set 58
II. 2 Fonctor 59
II.2.1 Definition 59
II.2.2 Natural transformation of a fonctor 59
II.2.3 Universal element 60
II.2.4 Representation 60

III Demonstrations 61

IV Example of language production 63
IV.1 General 63
IV.2 Basic rules of production 63
IV.3 Rules of production 63
IV.4 Metarules 65
IV.5 Rules of meta-production 66
IV.6 Tutorial for expressing a behaviour 66
IV.6.1 General conventions 66
IV.6.2 Real-Time 67
IV.6.3 Creation and modification of an active element 68
IV.6.4 Simple action 68
IV.6.5 Synchronisation of behaviours 69

V Example of high level description: a work plant 71
V.1 General 71

 Content

 System Modelling 5

V.2 Fisrst level of analyse 71
V.3 Second level of analyse 73

VI Example of low level description: an analog to digit converter 75
VI.1 General 75
VI.2 Fisrst level of analyse 75
VI.3 Second level of analyse 77
VI.4 Third level of analyse 80

VII Bibliography 83
VII.1 General 83
VII.2 CSMF, working drafts 85
VII.3 Normative documents 85

VIII Index 87

 BIOGRAPHY 89

 7 System Modelling

PART 1
EXECUTIVE SUMMARY

Formerly, this contribution dealt essentially with the ISO project n°1.21.63: this project con-
cerns a « standard for the Conceptual Schema Modelling Facilities » (CSMF standard). It appears further that the
items of the proposed methodology, outlined thereafter, may concern also some other ISO activities. Thus, this
observation justifies the integral presentation of this study to the ISO meeting in Bellevue.

This study, all the time in improvement, was undertaken several years ago, with the technical
or financial assistance of:

 - Laboratoire Central des Ponts et Chaussées (Ministère de l’Équipement)1,
 - Scétauroute2,
 - Club des Utilisateurs Bull Européens3.

 A) Need of CSMF

System designers and users, in any organisation, have skills normally covering fields other
than information technology; these fields constitute their Universe of Discourse (UoD). Consequently, if in-
formation technology is of unquestionable importance in any enterprise, it must always be combined with other
techniques implemented for the same purpose with equal importance; too radical a separation between these
other techniques and information technology, more particularly with regard to software engineering, would be
unrealistic. The desired organisation calls for the availability of a method and practical facilities for assistance in
the use of information technology in their current activities, in particular for the specification of the functions
they assign to the various devices, and specially to the computers, within the systems concerning them.

The engineer having overall responsibility for IT equipment in his enterprise can only have a
general attitude with regard to the diversity of techniques and domains involved; however he must have metho-
dical and technical aids enabling him to act as an informed interlocutor of contracting firms, which are no less
diverse in their respective specialities, and who he will have to call upon. Consequently, we have chosen the
hypothesis of an engineer specialising in a particular engineering domain but not a specialist of the many tech-
niques concerning information technology.

Every engineer required to work on a system or on a component of a system, obviously needs
any information existing on this item when performing his work. In addition, information concerning the rest of
the system may also be useful to him. Thus, before doing any action on the system, he must consult a volume of
information whose size increases with the size and with the complexity of the system

Simulation is the technique usually employed up to the present time to aid engineers in certain
types of work. This technique, used for many years, long before the advent of data processing, makes use of
means which are either created empirically or deduced by analogy or by the transformation of theoretical models
of the items to be simulated. Data processing subsequently favoured the use of numerical simulation, since any
program intended for calculation on the values of state parameters of any real item constitutes, in fact, a
numerical simulation of this item.

And, the purposes of a theoretical model involve aspects other than numerical simulation, even
if data processing has found in this area a privileged field of application: other uses of models are possible.
These uses constitute the domain of « Computed Aided X » where X represents different possible activities: de-
sign, maintenance, technician teaching, fault diagnostic… From this viewpoint, it should be noted that the notion
of model has taken on a new connotation. Formerly, a model, expressed in the form of a program, was a
technique intended for data processing. It has quickly become data itself, to be processed by techniques devel-
oped for aiding engineers in their activities4.

These objectives depend on the existence of strict modelling facilities: the CSMFs which pro-
vide conceptual definitions, language and software tools (Figure 1).

 1 The L.C.P.C. is the Main Road and Bridge Research Center of the French Ministry of Equipment.
 2 Highway Engineering Office.
 3 European Bull Users Association.
 4 Savoysky: 1975, xxxiii ; 1981, xxxv.

Executive summary

System Modelling 8

Figure 1: Relation within the CSMF tryptique and its uses

 B) Need of standard for CSMFs

The development of relationships between organisations involves a correlative elaboration of
links between their systems. There is the origin of the concept of open system.

At any time, a manager may have to guarantee the safety of his system; nowadays, the idea of
a totally closed system, i.e. isolated from its environment, is an abstraction. On the contrary, the daily extension
of the collection of functions of this system outward, by linking one or more surrounding existing systems, be-
comes usual.

The accumulation of these exchanges between systems requires the development of common
practices for facilitating them.

 C) Structure of the study

The next part «Physical concepts » determines, in a an natural language, an unitary and re-
duced system of concepts and method for producing assemblages of concepts; however, all the items of this ap-
proach may be modelled with the further theoretical elements. So, and because mathematics have the main ad-
vantage of providing strict models, the following part « Theoretical elements » proposes a structured collection
of mathematical elements as a fundamental instrument for this general purpose. Let us note that this approach
complies with IRDS5. The last part « Description language » determines a short formal etymology method for
expressing the precedent concepts; for fixing their axiomatic origins or their relative positions in relation to
other concepts; for allowing the comparison between them and other different existing definitions, and finally
for introducing a formal definition method of description languages.

The two parts « Physical concepts » and « Description language » show a possible way for the
CSMF standard study. The part « Theoretical elements » belongs to mathematics; thus it is universal and has
not to be standardised; nevertheless it shows how understandable elementary mathematical concepts may sup-
port IT standard without strenuous elaboration. The Figure 2 shows the relationships between the different parts
of the study and indicates those of these parts which may belong to a standard document (dashed surfaces).

 5 IRDS - part1, pp27/28.

 CSMF tryptique

 CSMF CSMF standard

Diagnostic

Software
assistance tools

Theoretical
foundation

Language

{Concept}

Formal description

Model
of system

Language
foundation

 {Basic concept}

Structure

Structure

Kernel

 Observation

Kernel

Design

Design

Formalism

Expression

Result

Data

Action on the system

 UoD(s)

System
(part of the UoD)

 Executive summary

 System Modelling 9

Designer

Mathematics

System descriptionSystem

UoD

Physical concepts

Theoretical elements

Observation Description

Description language

Figure 2: Structure of the study

 11 System Modelling

PART 2
PHYSICAL CONCEPTS (TIN FRAME)

Pourquoy est ce que nostre langage commun, si aysé à
tout aultre usage, devient obscur et non intelligible en
contract et testament ; et que celuy qui s’exprime si
clairement, quoy qu’il die et escrive, ne trouve en cela
aulcune maniere de se declarer qui ne tumbe en doubte
et contradiction ?…
Montaigne, Les Essais, De l’experience.

1 GENERAL

 Multiple definitions. Some other similar definitions of the concepts described hereafter are collected in Appendix I.
They are stated in different normative documents. If necessary, their existence is pointed out with the symbol heading
this note.

It is upon the establishment of some universal simple concepts that lies our only chance of
standardisation of system description. The notions developed below, necessarily includes the plurality of tech-
niques used; it is in relation with this broader acceptance of them, that the notion of integration must be consi-
dered. They also take in account the plurality of UoD such as: banking, transportation, industrial process control,
research, etc.

In that order, the main purpose of this informal chapter is to propose some basic, neutral and
general concepts having the theoretical elements proposed in the following part as sound foundations. The
principles of their current expression will be examined in the next part. The choice and the definition of basic
concepts are justified by common and global needs of system designers dealing with different fields of activities.

2 DEFINITIONS OF PRIMARY COMPONENTS OF SYSTEMS

2.1 General

 Multiple definitions: object (Page 55)

The concepts are expressed there from an user’s viewpoint. Some will at times appear naive to
readers. This apparent naivety is however deceptive because the assemblies subsequently constructed using
these notions are often complex; a property of information technology resides in the fact that it favours the
growth of systems in which the operating logic surreptitiously exceeds human understanding. It is thus important
to pay rigorous attention to the definition of basic notions, even the simplest or most evident, thus hopefully
avoiding the risk of subsequent ambiguities.

 A terminological complication appears. First, the observable components belong to the real
world supporting the UoD. Nevertheless, each time we have to study such a component, we must use a repre-
sentation: the need to describe a component arises just when it comes into consideration for study or for use. A
representation may be: a description in a natural language, an image, a model using a sound formalism, etc. Any
representation now is also a component and so forth. For that reason the word « component » has a wider
acceptation: the same word may be used for speaking of a real entity or for its representation. However, any ac-
tivity which may concerns us, produces essentially component descriptions, at different stages of completion,
and not the real components themselves. Then, in the absence of ambiguity and to avoid abusive language, the

Physical concepts (Tin frame)

System Modelling 12

term « component » will be used in place of the corresponding expression « component description ». The same
assumption is done for: system, module, process, produce6, etc.

2.2 System

2.2.1 General definitions

 Multiple definitions: system (Page 55)

A system is by convention specific to a domain of activity; it is a dependent part of real world.

 concept 1: A system is a collection of components called devices (concept 2), individually processing and
exchanging other components called produces (concept 3), with each other and with the envi-
ronment of the system7, in order to achieve the execution of a production or of a service of an
industrial nature:

 concept 2: A device is a component of a system or a part of a system; it represents a set of coherent func-
tionalities (concept 4)8.

 concept 3: A produce is a component handled by a device as input or output of its functionalities or ex-
changed between devices.

This distinction between device and produce is arbitrary: we will further show that a device
may be also viewed as a produce and reciprocally. One may object that there is no need for two words to express
the same concept and, that there is a vain terminological complication. In spite of these remarks, this termino-
logical distinction will be justified further by the distinction of components having different positions in the sys-
tem.

2.2.2 General case: physical system

For different purposes, every physical system must be analysed. This analysis is related to the
formal system chosen by the analyst, and enabling the result to be expressed in the form of a description9. This
descriptive aspect, though closely related to the analytical aspect, will sometimes be examined separately in this
chapter.

This chapter deals with the general case of real systems integrating elements of information
technology, without being limited to systems made up exclusively of such elements. For the designer of a system
or its subsequent operator, knowledge of the system and of the physical laws governing it must prevail over that
of the elements of information technology used as tools. The notions previously introduced and all that which
will be introduced later are usual in certain fields of activity, such as conversion industries. They are ge-
neralisable: an automated shop is thus analysable, but so also is the entire company in general and any software
in particular. Examples 1 to 12 beneath illustrate the diversity of the types of physical systems, from a top level
to a very low level, falling within the scope of this chapter.

 6 In this version, we prefer to use the word « produce » rather than the word « product » when we are speaking of

physical system element. This choice eliminates the polysemy due to the use of the physical acceptation and the
mathematical acceptation of « product » in the same paper.

 7 Observing the outside, every user module is generally affected by the existence of an environment with which it is
destined to interact, but which escapes the control of the system manager. The idea of a totally closed system, i.e.
isolated from its environment, is an abstraction: the negation of any exchange of a given system with the rest of the
world is a working hypothesis which is always possible but dangerous, especially when its safety is specified. The
extension of the system outward by introducing one or more surrounding modules results from this requirement. The
specification of these modules is most often equivalent to describe passively the constraints they impose, sometimes
outside of standards.

 8 Preference is given to the neologism "functionality" over the term "function" whose sense, fixed strictly in mathematics
and formal linguistics, is too restrictive for general use.

 9 The use of several formal systems is current practice; this is the case, for example, of an algorithm whose expression in
a given software exists in several formal systems: high-level language, intermediate machine languages, binary
language.

 Physical concepts (Tin frame)

 System Modelling 13

 Example 1: A network of motorways, with its infrastructure and its appurtenances, its users and its information system.
 Example 2: A multi-purpose vehicle for the measurement of pavement properties.
 Example 3: A bridge deck.
 Example 4: A bridge deck raising site.
 Example 5: An information system.
 Example 6: A communications network.
 Example 7: A microcomputer and its software.
 Example 8: An office automation system.
 Example 9: An accounting software.
 Example 10: A data acquisition and interpretation system.
 Example 11: An “ intelligent ” actuator (hardware and system with built-in microprocessor for control and communication).
 Example 12: A sensor.

The theoretical elements defined in the next part, are intended to support the modelling of such
entities.

The listing of elements distinguished by analysis constitutes the morphology (concepts 17, 19)
of the system; the expression of the rules of individual or mutual behaviour of the elements constitutes the
physiology (concepts 18, 25) or different aspects of the behaviour of the system (concepts 18, 26). A physical
system is never isolated: there is at least one process receiving at least one produce from the outside; similarly,
there is at least one process sending at least one produce to the outside. This outside, about which there is often
scant knowledge, always different from what is known about the physical system, is the result of a generally
distinct approach; it is called environment of the system10.

The notion of subsystem, also called module, is introduced in this set of basic concepts in or-
der to facilitate the hierarchical classification of components belonging to the same system or to its environment.

 Example 13: The part of a system providing communication between all the elements of this system may be set apart as a module.

2.2.3 Special case: information technology system

Some modules may be made up exclusively of elements pertaining to information technology.
Any module of this type may be isolated conventionally from the rest of the system; it is then called an informa-
tion technology system, and the physical system within which it is integrated becomes its environment.

In spite of the importance currently attached to these particular elements, it appears clearly that
they constitute neither its morphological totality, nor its physiological finality. It is valuable to the architect
engineer, at any time in the life cycle of the physical system, to have methods and means of action taking into
account the presence of information technology, but which are not restricted thereto. Two Examples show the
relative nature of the notion of information technology system. They show the plurality of relations linking these
systems and their respective environments and the resulting diversity of standardisation requirements.

 Example 14: An information system (Example 5, Page 13) is a possible module in a motorway network (Example 1, Page 13). It is
generally made up of elements of information technology and, in this case, considered to be an information technology
system.

 Example 15: In a motorway network (Example 1, Page 13) for which many data acquisition operations are to be carried out using
appropriate instrumentation, every acquisition and interpretation chain (Example 10 Page 13) is assimilable to an
element integrated in the operating equipment (toll, signing, control, etc.) and specific to this equipment. On the other
hand, in a bridge deck raising operation (Example 4 Page 13), the chain that acquires and restores in real time to the
operator all the information relative to the behaviour of the structure is a sophisticated module considered by the
construction project head to be an information technology system.

An information system embedded in any physical system is certainly nowadays one of the
masterpieces of this physical system. This kind of module is directly issued from the use of some CSMFs11.

 10 The notions of morphology and physiology are commonplace as concerns living systems. Maurice d'Ocagne was

apparently the first to explicitly transpose these notions to the field of mechanical calculation while commenting the
thesis of Louis Couffignal (in : Histoire abrégée des sciences mathématiques, Vuibert, Paris, 1952, pp. 389/391).
These notions are clearly present in information technology, especially in the software industry; usually, they are
however distinguished other than by their usual names.

 11 The existence of such information system is possibly the best reason for arguing in favor of the integration of this study
within the TC21 WG3 activity.

Physical concepts (Tin frame)

System Modelling 14

2.3 Functionality

2.3.1 Definition

A functionality F is the most elemen-
tary form of a device. The use of this neologism is pre-
ferred to that of function, because the properties assi-
gned to it are more general than those of the notion of
function12.

 concept 4: The classical diagram of Figure 3 re-
presents graphically three constituent
elements of a functionality13:

 concept 5: its body (M) which is a device,
 concept 6: the specification of produces (I) placed at its inputs,
 concept 7: the specification of produces (O) placed at its outputs.

The functionality moreover supports general conditions or constraints imposed upon it: these
are the known physical laws applicable to this functionality:

 concept 8: those concerning I are pre-conditions;
 concept 9: those concerning O are post-conditions;
 concept 10: those concerning both I and O and mutually controlling them are invariants14.

The notion of functionality is recursive: any functionality defined after an analysis stage can,
in turn, be analysed in new functionalities. At the start, before any analysis work, the entire physical system
constitutes itself a functionality. From the simple viewpoint of the approach we are describing, the notions of
system and functionality are thus identical; we shall however distinguish them conventionally, leaving the notion
of system at the start of the analysis and placing the notion of functionality at the different stages of the analysis.

2.3.2 Relations between functionalities: exchange of produces, interoperability

 Multiple definitions: interoperability (Page 54)

The interactions bet-
ween devices of the real physical system
are possible only if exchanges of produ-
ces exist between these devices. The re-
lations between functionalities describe
these interactions. Yet, these interactions
and consequently the relations that
express them depend on various physical
laws or conventions applicable to each
examined part. The only exception is the

 12 In fact, this neologism is totally unnecessary: the algebraic notion of functor accounts for the properties attributed to

this diagram. This term could thus be used.
 13 This well-known diagram is currently used. Mathematical models are less used. Let us however note that the algebraic

notions of category and functor are used for modelling E, S and M. The advantage of this approach is that it accounts
in a global and standard manner for the morphological and physiological properties of these terms, whatever their
respective physical natures.

 14 These constraints often remain implicit - or ignored - in system specifications or descriptions. The reason is that many
items of equipment are designed and constructed knowing these laws; they consequently protect the uninformed user
from their possibly harmful effects with the reserve that this user indeed complies with the validity limits indicated by
the supplier. These validity limits are in most cases broad, leading to a false impression of safety, and then negligence,
and finally involuntarily abusive usages involving immediate or latent errors. There are many instances in
instrumentation, and simply reasoning by induction enables us, for example, to draw up a sizeable inventory of
deleterious effects.

 I

 M

 O

F=(M,I,O)

Figure 3: Functionality

 O

 Interoperability:
 O and I’ must be consistent

 M
 I I’

 M’
 O’

F F’

Figure 4: Exchange of produces

 Physical concepts (Tin frame)

 System Modelling 15

relation, omnipresent in all systems, expressing the existence of an exchange to the exclusion of all other
properties, for any couple made up of an output O of a given functionality F and an input I’ of any functionality
F' 15.

 The specifications of O and I' are generally different but must obviously be consistent: the
template of I' must be compatible with that of O. Two questions must be answered:

 - define consistency criteria for the specifications between O and I', which criteria do not exist in
the absolute, but depend most often on the couple (F, F'),

 - provide the practical means of verifying that this consistency exists in the specifications for
any exchange, the verification quickly becoming complicated with the number of exchanges16.
That is one of the major problems of system validation.

 concept 11: The consistency of O in F with I’ in F' determines the quality of interoperability17 of the cou-
ple (F, F').

Let us note in this respect that interoperability, thus defined, is a quality attached to a couple of
functionalities and not intrinsic to a single functionality. Yet, there is a lack of definition: this definition of
interoperability lies upon the precedent definition of consistency which is not clearly stated above. Here is an
example of dubious informal definition which needs the assistance of mathematics for clarifying it.

 Example 16: F is a sensor (Example 12, Page 13). I is a physical magnitude: the frequency at which vehicles cross a given point of a
pavement; M a device such as an induction loop embedded in a pavement and its associated circuits; M delivers a
voltage O of extremely low amplitude whose derivative changes sign with a frequency proportional to the value of the
magnitude I measured. In other words, O is a train of "unformatted" pulses. It should be noted here that O must be
regarded as a DC voltage whose evolution depends only on variations in I and can therefore not obey any standard, by
definition and construction. F' is a measurement chain including, among other functionalities, a pulse counter reacting
only on the edges of variations in I' and imposing by construction of M' a minimum restoring time between two
successive edges. The two templates present are thus totally different, but may be consistent: the rising or falling edges
of O must be exhaustively identifiable by M' 18.

 Example 17: F is the counting device described above (Example 16). O is a structure of data including dates, times and values of
counts. F' is an information system (Example 5, Page 13). I' is a structure of digital data made up of fields allowing the
recording of a nature of variable, its value, its acquisition attributes. M' is a set of functionalities allowing the
acquisition, centralisation, management and finally selection by interrogation of such data structures. O' is a structure
identical to I'. Consistency requires, in this case, that the structure O be included in I'.

2.3.3 Relations between functionalities: translation of a functionality into another, portability

 Multiple definitions: portability (Page 55)

The definition of
F: M(I,O)
consists in defining the properties required for each of these elements as well as the cons-

traints. The body M, its inputs I, its outputs O, then have an expression in a formal system S (Figure 5). This
expression may be translated in another formal system S’:

F’: M’(I’,O’)
F’ is a new functionality whose properties comply with the conditions previously specified:

 concept 12: The specifications of the functionality F to be transported determine a template; the portabil-
ity of F implies that the features of every implementation must fall within this template.

 15 The Graph theory can be used here; it is then important to clearly specify the interpretation adopted for the apexes and

the arcs. In the approach of this paragraph, the apexes are inputs or outputs of functionalities. The arcs represent recent
exchanges between functionalities but also the functionalities themselves, which establish links between their own
inputs and outputs.

 16 This consistency check between functionalities (in the specifications) or between components making up these
functionalities (in the solutions) calls for formal verification methods. We shall return to this point in the last chapter.

 17 Neologism (F: interoperabilité).
 18 This Example may be considered as a "butterfly" effect in automatic control. It is a point of detail obviously ignored by

owners. It entails a latent risk of inadvertently false measurements having, for example, the real-time result of failure or
breakage of equipment and always resulting in financial losses incommensurate with the relatively modest cost of the
sensor.

Physical concepts (Tin frame)

System Modelling 16

Formally, a good solution consists in proposing
such transformations T, U, that I'=T(I), M'=U(M) and such a
transformation V that, with its inverse19, O=V-1(O'). As a functio-
nality is a description of a real element of a system and not the
element itself, the operation described above can be assimilated
with the passage from a first assembly in a formal system to a se-
cond assembly, image of the preceding, in another formal system.

This diagram gives an image of portability20.
Let us assume the existence of a first functionality F which must be
implemented in different formal systems S’, S ’’, etc. If F’ in S’,
F’’ in S’’, etc. exist, then F is transportable from S’ to S’’, etc.

 Example 18: F is a program expressed in a high level language S, and F’ is
the same program translated into the language S’ of the com-
puter.

2.3.4 Interface

 Multiple definitions: interface (Page 54)

The preceding discussions show the importance of the notion of consistency in the definition
of system specifications as well as in the synthesis of a solution. The questions of consistency remain when ref-
erence is made to standards for specifications, and when elements of standardised solutions are used during
construction. The notion of interface is developed in Standardisation to answer these questions.

The interface is, by convention, a set of specifications determining the characteristics that must
be met by functionalities in order to proceed with exchanges. Two types of interfaces thus correspond to the two
types of relations determined in the first two chapters.

 a) Interface of the first type

 concept 13: The interface of
the first type
(Figure 6) is a
set of conven-
tions concerning
exchanges bet-
ween two func-
tionalities F and
F’. In addition to
the definition of the structured set of informations to be linked (O and I’), these conventions
must also, if required, include time-dependent specifications as well as qualitative speci-
fications (e.g.: safety) concerning this information.

Let us note that the lack of consistency between O and I’ occurs frequently in heterogeneous
system. This implies the insertion halfway to M and M’ of a mechanism which is well a component which en-
sures the compliance of O with I’.

 19 Algebraically, the diagram of Figure 5 "commutes": O=V-1(M'(T(I)) = M(I) and M' = U(M). This strictly theoretical

changeover is in practice not feasible; the approximate result O* = V-1(O') must then be compared with the template of
O. Algebra makes it possible to rigorously express these conditions and then to construct the formal verification
algorithms. This observation, which would appear of no value in the case of simple figures, takes its full importance in
the case of functionalities obtained by combinations.

 20 This basic diagram may also represent a relative definition of the notions of user and supplier: the user is the individual
or organisation which specifies a functionality and, consequently, requires a service; the supplier is the one who propo-
ses and constructs the solution providing the required service. Such a diagram can be used iteratively: according to this
remark, there is no absolute definition of user or supplier; in particular, the notion of end user is always a conventional
one.

 I
 M

 O

 M’
 I’

 T U V-1

 O’

F (in S)

F’ (in S’)
Figure 5: Implementation

 I’
 M’

 O’

 Conventions concerning exchanges

 I
 M

 O

Figure 6: Interface. First type

 Physical concepts (Tin frame)

 System Modelling 17

 b) Interface of second type

 concept 14: The interface of the second type (Figure 7) is a
set of conventions governing the transforma-
tions from an expression (I,M,O) pertaining to
a formalism S into a translation (I’,M’,O’) per-
taining to an other formalism S’. The con-
ventions involve produces I, I’ and O, O’ to be
processed by the functionalities with, in addi-
tion the functionalities M, M’ themselves han-
dling these informations.

Let us note that in this matter, an component
serviceable for performing these transformations, and also if ne-
cessary their reverses, must exist.

2.4 Device and produce

A device is a structured collection of functionalities. It has an interest in a system if and only if
it is able to interact with other devices. This condition means that the component has, at least, one facial
functionality.

 concept 15: A functionality F can be seen from another functionality F’ if it may send at least one produce
towards this functionality or if it may receive at least one produce from it. F is a facial func-
tionality if F’ may belong to another component.

 concept 16: The collection of facial functionalities of a device constitutes its face or its visible part.

This definition is simple. It assimilates an device to a black box having some points of ex-
change with its environment. A produce is a component exchanged between devices or performed by a device.
A produce may be perceived as a functionality in its simplest form considering the physical absence of input and
output specification. A device may be considered as a produce and exchanged between devices or performed by
an other device. Inputs and outputs of functionality are produces.

 Example 19: A program or data exchanged between two computers.
 Example 20: A program processed by a translator.

3 DESIGN OF HETEROGENEOUS COMPONENTS OF A SYSTEM

3.1 General

In treating of any part of a system, we must deal with it in two ways. We must deal with its
observable structure made of heterogeneous components and its possible variations in time; we must also deal
with its present and future possible uses. That is to say we have to study it morphologically and also physiologi-
callly.

Two ways for system designing are examined: analysis (top-down) and synthesis (bottom-up).

 I
 M

 O

 M’
 I’ O’

Conventions for transformation
Figure7: Interface of the second type

Physical concepts (Tin frame)

System Modelling 18

3.2 Analysis

3.2.1 General definitions

 Multiple definitions: behaviour (Page 54)

The analysis of a system or of a device makes it possible to distinguish iteratively, gradually,
the devices and produces composing it. Let us summarise the basic elements of the approach. A system is a co-
herent whole of parts assembled to achieve a common goal. The first step in the analyse of a system is the sepa-
ration of components and the recognition of relationships between them. After, each component may in turn be
regarded as a system. The model and its expression must express this general structural aspect. Correspondingly
we agree to build our models in two parts: morphology and physiology.

 concept 17: the definition of a components collection which compose it; these components are defined
globally without analysing their respective details, outside of the inventory of the produces
they are liable to exchange; we name this collection: morphology (concept 19) ;.

 concept 18: the definition of rules collection which determines the interactions between these components;
these rules constitute the behaviour of the analysed system; we name also this collection: phy-
siology (concept 25);

3.2.2 Morphology

 concept 19 The primary morphology of a system
includes the following elements, which are
all components of the system:

 concept 20: produces;
 concept 21: devices used for handling the flows of pro-

duces or converting these produces.

Each produce may in turn be regarded as a
system having iteratively at its level a primary morphology
and so on…

 concept 22: the exhaustive morphology results from
this primary morphology, and in addition from the primary morphology of the different
components belonging to it and so on… . In order to simplify the text, a primary morphology
will be called shortly morphology.

 Example 21: Flows of energy, materials, information, programs, and so on.
 Example 22: Construction site equipment, industrial computer interfaces, programmes, and so forth.

Let us note that certain elements may belong to both categories mentioned above. Finally,

 concept 23: some elements of a morphology are known from outside the device and constitute its visible
part,

 concept 24: while others constitute its internal part.
 Example 23: A sensor, an actuator may be viewed as elements of the visible part of a morphology.

3.2.3 Physiology

 Multiple definitions: action (Page 54)

 concept 25: A primary behaviour (or primary physiology) is a collection of actions
 concept 26: the exhaustive behaviour (or exhaustive physiology) results from this primary physiology,

and in addition from the primary physiology of the different components belonging to it and so
on…

MORPHOLOGY

PHYSIOLOGY

 Visible part

 Internal part

OUTPUT

INPUT

Figure 8: Component

 Physical concepts (Tin frame)

 System Modelling 19

Each element of a physiology, called an action specification, must specify the conditions for
activating each device and must express, among other conditions, the time-related constraints to which it is
subjected.

3.2.4 State of a component

 Multiple definitions: state (Page 55)

The morphology and the physiology of an component constitute both a general description of
all the possible manifestations of this component.

 concept 27: A description of a particular manifestation of the component is called an occurrence.
 concept 28: An occurrence, expressed within a translation with respect to time, is called: limit sate of the

component.
 concept 29: A sample is a part, during any time interval, of any limit state of the component.

The set of all possible limit states is associated with the component. This set is structurable
(Figure 9). In particular, two main classes of parts may be distinguished:

 - the part made of limit states usually pertinent for the UoD,
 - the complementary part.

 concept 30: Every subset of the class of pertinent limit states is called a state of the component. Any set or
subsets may be represented by one of its elements.

 concept 31: Any subset belonging to the complementary part is an exception.

3.2.5 Recursivity of morphology and physiology

The general structure above can be used for the analysis or the description of a system or of a
device. In each case, the final result appears as a hierarchical description of the system in which each level of the
hierarchy provides a detailed description of the components introduced into the morphology of the preceding
level.

State
change
i → k

 Set G of limit states g associated with C
 MORPHOLOGY

Construction of the set G of all the possible oc-
curences of C, except for a translation in time:
limit states g of C; selection of subsets of limit
states: states of C; identification of state change.

Time

State i

State j

j → ki → j

 Component
C

 (Possible occurence)

 PHYSIOLOGY

G: g
Structuring G

State k

}{

Figure 9: State, change of state

Physical concepts (Tin frame)

System Modelling 20

Each level of the hierarchy consequently introduces descriptions containing details which are
added to those expressed in the preceding levels. There is a limit to this procedure: the specificity of the ele-
ments introduced at each level is asserted as the analysis progresses in detail; after a certain level of analyse,
three cases appear as possible:

 - the description remains possible and pertinent in the proposed global formalism,
 - the description remains possible in the proposed formalism, becomes inadequate or insufficient

owing to the specificity of the new properties introduced,
 - the description is impossible, owing to insufficient knowledge about the element, or is consi-

dered to be unnecessary.

In the analysis of a heterogeneous system, one should always be in a position to stop its des-
cription in the global formalism and to specify if necessary the existence of a description in another formalism.
This is a difficult formal problem for the definition of consistent languages.

3.3 Synthesis

The synthesis is a bottom-up mechanism for designing a system. The synthesis of an compo-
nent consists:

 - in creating a complete morphology (visible and internal parts) by means of previously defined
components and if necessary of new components,

 - in associating the definition of physiology with these morphologies.

It is then necessary to examine how the combination of these components can function. Seve-
ral cases may be considered, and we shall mention three essential
ones:

 (i) The definition of components is sufficient for the
complete definition of the association (Figure 10,
1st case).

 (ii) The definitions of components are insufficient to
ensure a complete definition of their association;
the definitions are completed by the definition of a
supplementary component which, associated with
the initial components, brings us back to the pre-
ceding case (Figure 10, 2nd case). In this case, the
exhaustive behaviour of the whole results from the
physiologies of the embedded components.

 (iii) The complement to the definitions is provided by
a new specific physiology (Figure 10, 3d case); let
us note in this case that the whole behaviour of the
new component results not only of this new
physiology but also from the physiologies of the
embedded components.

 (iv) The definition of the new component results from
a combination of the former cases.

 Example 24: A collection of asynchronous parallel tasks (1st case).
 Example 25: A collection of synchronised parallel tasks; Ω is a clock (2nd case).
 Example 26: A collection of scheduled tasks. The physiology rules the schedule (3d case).

 Morphology

 Morphology

 Morphology

 O’ O’’ O’’’

 O’’’ O’’ O’

 Ω

 O’’’ O’’ O’

 Physiology

1st case

3d case

2nd case

Figure 10: Synthesis of component

 Physical concepts (Tin frame)

 System Modelling 21

3.4 Component typology

 Multiple definitions: class (Page 54), type (Page 55)

 concept 32: Component typology consists to allow the expression of collectivising relationships between
components to be defined later.

Two ways of collectivisation ruling are possible:

 - Enumeration and description of each state available for all the components belonging to the
set.

 - Expression of the laws defining the states and allowing the construction or the recognition of
any component having states in compliance with these rules.

 concept 33: The collectivisation rules determines a type.

We may associate with any type, the set of all possible components complying with the chosen
type.

 concept 34: Any existent component belonging to a system is an instantiation of the type with which this
component complies. This component is also an element of the set associated with its type.

 concept 35: A formal component is a component defined away in state and time and place, that means
independently of any actualisation

 concept 36: An actual component is the specification of a discernible possible occurrence: the use of this
component implies the discrimination of a recognisable state, and rigorous locations in time
and in space.

 concept 37: Sometimes a particular component may be chosen in order to define and further to represent
the type: it is a prototype. In this case the typology must associate to this component, the col-
lectivisation rules necessary for defining the type.

 concept 38: The morphology of a prototype is a protomorphology.
 concept 39: The physiology of a prototype is a protophysiology.

 Set associated with the type Proto morphology

 Proto physiology

 Representation

 Generic rules

Prototype

 Descendant
 morphology

 Descendant
 physiology

 Descendant
Figure 11: Use of typology and of genealogy

Physical concepts (Tin frame)

System Modelling 22

3.5 Component genealogy

 Multiple definitions: inheritance (Page 54)

 concept 40: Component genealogy to define a type and to use it as a root or as a parent for further defini-
tions using inheritance rules.

 Example 27: An analogue voltage signal is an Example of type of component. The chosen prototype may be the particular signal
used for the tuning of apparatus. The sampling is an Example of generic rule. In this case, the descendant type is the set
of sampled voltage signals.

 Example 28: Let us note that from this approach, the classical subtyping in programming language is a particular and limit aspect of
generation; in this case, the generic rules are used only in order to restrict the previous set of states.

 concept 41: A parentis an initial or intermediate item of a genealogy used as a basis for applying the in-
heritance rules

 concept 42: The morphology of a parent is a parent-morphology
 concept 43: The physiology of a parent is a parent-physiology
 concept 44: A descendant is a final or intermediate item of a genealogy which results of an application of

the inheritance rules
 concept 45: The morphology of a descendant is a descendant-morphology
 concept 46: The physiology of a descendant is a descendant-physiology

A particular component may be chosen in order to represent the type. In this case, this com-
ponent is a generic component. These rules of generation may concern either the morphology, either the phy-
siology. The result of application of generic rules is ordinarily a type. However, the set associated with the type
may be reduced to a singleton and used implicitly as a single component.

 Theoretical elements (Gold frame)

 System Modelling 23

PART 3
THEORETICAL ELEMENTS (GOLD FRAME)

Et ce moyen est le projet que j’ai d’une langue ou écrite
nouvelle … ; et non seulement on trouverait là-dedans
des voies infaillibles pour arriver à la solution des
problèmes qui peuvent se résoudre par la seule force du
raisonnement, mais lors même qu’il s’agit d’une
question de fait, et qu’il reste encore des expériences à
faire qui ne sont pas toujours dans le pouvoir des
hommes, ce calcul serait suffisant pour nous conduire,
en attendant, sur les connaissances déjà données.
Leibnitz, lettre à Jean Frédéric, 1679.

1 PROLEGOMENA

Physical systems are generally described in terms of operations relating physical items. The
logical complexity of actual systems calls for simple descriptions in terms of symbolic expressions modelling
these items and their relationships. Mathematics and particularly algebra, deals with this purpose.

This part concerns the use of algebraic notions, and particularly those of category theory, in
the modelling of systems and, more particularly, in the modelling of those belonging to the field of application
of ISO standardisation work.

 a) Modelling and vocabulary

The modelling method propo-
sed concerns the representation of systems made
up of entities belonging to the physical world by
means of systems made up of abstract entities
belonging to mathematics. The changeover from
one to the other is based upon the use of hypo-
theses adopting, for the physical units, properties
assigned to the entities of mathematics.

The words designating the en-
tities of the physical world21 are of current
usage; they are however chosen, to the extent
possible, preferably from a vocabulary not cus-
tomary to standardisation; this is seemingly
complicated, but the advantages will appear sub-
sequently when we shall apply the results of this
work to standardisation work in progress.

Words designating abstract
entities are those set by usage in mathematics.
We use them in this note without any restriction on their mathematical meaning. This option unavoidably leads
to risks of polysemy, as the modelling concerning the domains use these words with different meanings. A
fearsome example is that of the “object” word wich has different acceptations in different domains: a
component of a category in algebra, a tangible thing of the real world, a concept for system designing in data
processing, etc. These situations are dealt with respectively as they appear.

Words designating the modelling elements are introduced by the above-mentioned hypotheses
or by definitions.

Axioms and theorems appearing in appendices come from texts cited in the references.

 21 Universe of Discourse (UoD).

Items of the study

Model

Physical system Physical
hypothese

Theoretical
elements Mathematics

Modelling
element

Figure 12: Purpose of the study

Theoretical elements (Gold frame)

System Modelling 24

 b) Modelling and graphic representation

Figures accompany the text. They allow fast and intuitive interpretation of the abstract ma-
thematical notions developed. Although consistent with the text, they are sometimes fundamentally restrictive.
Recommended to the reader who wishes to conserve a general idea of the proposed approach, they are not re-
commended for those wishing to use and possibly go beyond the reasoning proposed. For the informed reader,
there are, for these figures, approximately the same restrictions as those existing in the particular case of multi-
linear algebra and its representations in affine Euclidean spaces.

 c) Purpose and limits of theoretical elements

This part proposes modelling elements and, consecutively, a method for model construction.
Unlike the usage which is unfortunately widespread, this is not one model, which would thus be universal for
the investigated domain: there are in fact potentially many more possible models than entities.

The diversity of the entities of the physical world counter the working out of modelling ele-
ments making it possible to depict all their physical properties. The properties of these elements must be suffi-
ciently general to belong to all the entities subject to modelling. Under these conditions, these modelling ele-
ments allow the building of models in which is depicted only the existence of these entities and their relations:
these are global models.

Finally, the finer modelling of each entity requires the introduction of additional hypotheses
specific to it. Generally, these hypotheses and the way they are used to build detailed models belong to often
interrelated existing theories: information theory, signal theory, mechanical theory, etc. It is important for the
elements introduced in this study to be consistent with these theories. The choice of these elements is delicate: if
too general, they would limit our possibilities to the mere construction of models low in properties, i.e. naive and
of no interest; if too detailed, they would also limit our possibilities to certain technical areas too restrictive to
use. Between these two extremes, the reasonable choice is difficult to establish. This note is thus only a prologue
to future developments.

This part is independent of any computer-readable language used for system descriptions. Yet,
it supports the formal semantics of such language.

 d) Brief introduction to main notions

The word "system" is frequently used in this note. Its prior definition would be fitting here.
However, as the entire note is devoted to the mathematical modelling of systems, this prerequisite will be lim-
ited, in the following paragraph, to a statement of simple facts of current observation.

Physical systems are made up of entities working interactively in order to achieve a common
technical or scientific goal. Each of these entities is a device. The device perform processing on other entities;
each of these other entities is a produce. Devices and produces are the components of the system. Exchanges of
produces between devices are indispensable for the existence of interactions between devices. We shall assume
for the moment that an entity can be seen as a device or as a produce.

 e) Brief introduction to method

The modelling of a physical system and, step by step, of each entity composing it generally in-
cludes two complementary parts:

 - The inventory of the entities making up the system and their relations. This is the morphology
of the system.

 - The inventory of rules governing interactions between entities. This is the physiology of the
system.

Analysis determines these top-down inventories; it is recursive: each morphology designates
entities; each of these entities is also a system amenable to study and so on. The stopping of the study on an en-
tity is imposed either by a decision on the part of the analyst or by a lack of knowledge.

The reverse construction consisting in assembling entities and governing their interactions to
form from bottom to up a new entity is a synthesis. Generally, the modelling of a system is a succession of
analyses and syntheses.

An entity whose morphology and physiology are determined is a procedure. A procedure is a
model since it is made up of two descriptions: a morphology and a physiology. It is a global and predictive
model of a physical system, of a device or a produce22 concerning all their possible occurrences.

 22 The systems, machines and produces are entities of the physical world, the process is the general model thereof.

 Theoretical elements (Gold frame)

 System Modelling 25

The concrete or experimental study of a physical system is a succession of observations of this
system or of certain entities of which it is composed during operation. We shall call process the description of
an operating case of a procedure. It is a special model of a physical system or device or produce23 concerning
only one of its possible occurrences.

 f) Summary of approach

 Chapter 2: Primitive elements; introduces the theoretical elements necessary in mathematics relative to a
process and then a procedure.

 Chapter 3: Recursive elements; constructs on the preceding elements the mathematical models of the
simple components; it then gives the basic rules for construction by successive analyses or
syntheses the mathematical models of complex components.

2 PRIMITIVE ELEMENTS

2.1 Method and constructive principles

These elements have to do with whate-
ver is immediately perceptible in a system: observable
facts or those that intuition or accumulated experience
suggest as observable.

The process describes a real or imagi-
ned phenomenon but only in time and space: it involves
the functioning of the system or of an entity composing
this system; the collection of all possible processes con-
stitutes the fundamental space associated with the entity
concerned.

General laws exist for this collection of
processes; translated mathematically, they allow the
structuring of the fundamental space and its transforma-
tion into a new space called a substrate. This type of
space is the basis for all the modelling elements devel-
oped thereafter.

2.2 Fundamental space

2.2.1 General

As we are concerned with observable phenomena, intuition immediately suggests that any
process should be expressed by a function allowing space as a variable. Modelling experience however warns us
about the known drawbacks of this representation method: there are techniques, and in particular signal proc-
essing, for which the functional representation does not readily account for certain physical properties such as,
for example, discontinuities24.

The proposed approach thus avoids having to set a priori a precise and definitive mathematical
form for the process model. We study the fundamental space without considering any particular form for this

 23 Any operating recurrence of a system, a machine or a produce is a phenomenon of the physical world; the process is its

particular model.
 24 The theory of distributions was devised to obviate this kind of difficulty.

Substrate spaceProcedure

Process Fundamental space

Observation

Design of structuresDesign of physical laws

Figure 13: Production of primitive elements

Theoretical elements (Gold frame)

System Modelling 26

process. The properties of the fundamental space result directly or by deduction from hypotheses allowed for the
represented entities. These properties then determine structures for the fundamental space.

2.2.2 Properties

Let us consider a physical system S (or a physical entity) with which we associate the follow-
ing theoretical elements:

 a) Intrinsic properties

 hyp. 1: There is a G = {g}; each g represents a process of S; G25is the fundamental space.
 hyp. 2: There is a particular element g0∈G representing the absence of process.

 - Comments

The data item for the assembly G is silent as regards the mathematical nature of its elements;
there is thus no collectivising property of the processes g allowing the construction of G, except for the one of
existing. The existence of G is thus allowed intuitively;

The word "functioning" is used in this text in preference to "behaviour" in order to avoid pos-
sible confusion, the latter term moreover having many definitions and already being widely used. To be ex-
haustive, we must thus include, paradoxically, in the meaning of "functioning" the case of total or partial inac-
tivity of S represented by g0.

There are few intrinsic properties. This situation is normal in the absence of knowledge re-
garding the processes: knowledge regarding processes ordinarily results from their observation and hence from
the existence of physical entities allowing these observations. The following hypotheses concern these new en-
tities.

 b) Extrinsic properties

The following modelling elements concern physical entities indispensable for observation:

 - observation spaces,
 - time which is a part of any observation space,
 - binary signals26 used for observation control.

 - Observation spaces

 hyp. 3: There is a countable collection of n sets Ai: A0, A1, …, An where Ai = {ai}; Ai is a space of
values27 and ai28 is a value;

 hyp. 4: Any observation set Ai must have a "minimal" structure; we shall assume that this minimal
structure is a relationship of a total order: ≤; Consequently, there is an element ai0 such that ai0
≤ai for any ai. ai0 is minimum.

 def. 1: The scalar product A = {a} = ΠAi (i>0) where a = (a1, …, ai, …, an) is a reference.

 - Time

 hyp. 5: A0 = T represents real time; T is isomorphic to the set of real numbers.
 hyp. 6: A closed set [t1, t2] is associated with each g: this is the domain of g.

 25 The notion of behaviour will be defined later.
 26 Still in anticipation of what follows, let us distinguish:
 - bivalents signals having any two states,
 - bivalent logical signals having two states: “true ”, “ false ”,
 - binary signals having two conventional states: 0,1.
 27 The index i marks the rank of each observation space Ai in the collection of observation spaces; used in the notation ai,

it indicates that ai belongs to the space Ai and does not mark any position in this set; the index notation is avoided for
this reason.

 28 Note that, in the notation “ai”, the letter i indicates that the element belongs to the set Ai and not the place of this
element in this set.

 Theoretical elements (Gold frame)

 System Modelling 27

 - Binary signals

 hyp. 7: There is a ∆ = {δ[τ1, τ2]}; any δ[τ1, τ2] is a model of the state of the rectangular signal
associated with the closed set [τ1, τ2] ⊂ T: this is the Heaviside step, ascending at instant
τ1, combined with the reverse step, descending at instant τ 2. T is the domain of δ[τ1, τ2].

 hyp. 8: There is a ∆ε = {δ[τ]}; any δ[τ] is a model for the high state of the pulse signal associated
with the closed set [τ±ε /ε → 0] ⊂ T; this is Dirac's pulse centred on τ. T is the domain of
δ[τ].

Anticipating the rest of the elements, hypotheses 7 and 8 above have to do with special proc-
esses: binary elementary signals. These are signals having only two possible states, designated conventionally as
high and low. Each occurrence of one of these signals is thus the appearance of one or the other of these states.
Only the occurrences of high states are used for the moment.

 - Comments

 Hypotheses 7 and 8 refer to distribution theory. Under these conditions, any rectangular signal
δ[τ1, τ2] can be derived for any τ of its domain T. In particular, the derivative for the lower
bound τ1 is the occurrence of the pulse δ[τ1] at instant τ1:

∂
∂τ

 δ[τ1, τ2] = δ[τ1], for τ = τ1

 For the upper bound, the derivative is -δ[τ2]; at any other instant, the derivative is 0.
 It will be reminded that δ[τ1, τ2] and δ[τ] are not functions and are nevertheless indefinitely

differentiable29.

2.2.3 Algebraic structures

The following hypotheses have to do with the physical properties of the observed system;
these hypotheses are represented by algebraic structures.

 hyp. 9: There is an application • : ∆ε×G → G. This application is the sampling at the instant τ. The
image of any g is a sample.

 hyp. 10: There is an application ⊗ : ∆ε×G → A. This application is the quantification at the instant τ.
The result is the quantified value of the sample.

 def. 2: For any g, the process g’=δ[τ]•g and g’∈ G is the instantaneous sample of the process g at
the instant τ

 For any instant τ not belonging to the domain of g, the sample of g at that instant is the sample
of g0:

 hyp. 11: for any τ ∉[t1, t2], (δ[τ] •g)= (δ[τ] •g 0)

 def. 3: for any g, δ[τ] ⊗ g ∈ A is the instantaneous value of g at the instant τ.

 For any instant τ, the instantaneous value of a process is equal to the quantified value of its
sample at the same instant:

 hyp. 12: δ[τ] ⊗ g = δ[τ] ⊗ (δ[τ] •g)
 Example 29: g being any process, δ[τ] •g is what a fast shutter enables us to observe; δ[τ] ⊗ g is what is recorded on a film.

 - Comments

 If g is a function of the time taking on its values in A, signal theory is applicable directly.

 hyp. 13: The observation is an application • : ∆ε×G → G; for any δ[τ1,τ2] ∈∆ and all g ∈ G of do-
main [t1, t2], there is g’’∈G such that:

 29 E. Roubine. Intrroduction à la théorie de la communication (Introduction to communication theory). Tome I. Signaux

non aléatoires (non random signals). Chap.III. Emploi des distribution (use of distributions), pp.23/52.

Theoretical elements (Gold frame)

System Modelling 28

 if τ ∈[τ1, τ2] ∩[t1, t2], then δ[τ] • g’’ = δ[τ] • g
 if τ ∉[τ1, τ2] ∩[t1, t2], then δ[τ] • g’’ = δ[τ] • g0

The domain of g’’ is [τ1, τ2] ∩[t1, t2]. This formalism means physically that the rectangular
pulse δ[τ1, τ2] limits the observation of g to the interval [τ1, τ2]. To simplify the language, we shall also say
that either the rectangular pulse breaks up the process g or the process g modulates the rectangular pulse. Note
that this formalism is independent of the mathematical nature of g; it is applicable in particular when g is an ana-
lytical function in the form of a simple product of a function multiplied by a distribution.

The simultaneous application of hypotheses 12 and 13 leads the following theorem (Appendix,
page 61, dem. 2):

 th. 1: if τ ∈[τ1, τ2] ∩[t1, t2], then δ[τ] ⊗ g’’ = δ[τ] ⊗ g
 else
 if τ ∉[τ1, τ2] ∩[t1, t2], then δ[τ] ⊗ g’’ = δ[τ] ⊗ g0 = a0

 - Comments

Note should be made of the difference between the two notions previously defined: the simple
sample is a process, an element of G, and the instantaneous value is the image of this sample in the observation
space A.

 Example 30: g represents an electric voltage, δ[τ] • g is what is restored by a sampler; δ[τ] ⊗ g is what is restored by a converter.
 Example 31: g represents the changes in the balance of a bank account, δ[τ] • g is the balance at a given date and time; δ[τ] ⊗ g is

the message delivered by the visual display of an automatic cash register at the same date and time.

2.2.4 Structures in classes

 a) Structure based upon process recursiveness

We are concerned with phenomena which are reproducible in time. The hypothesis used in this
paragraph is that any phenomenon in the functioning of a system is reproducible.

Let g and g’ be two elements of G; g and g’ are equivalent if they represent the same pheno-
menon, to within a translation in time. Let ρ be the equivalence relation based upon this property; the quotient
set, the elements of which are the equivalence classes is noted: Γ = G/ρ.

 hyp. 14: Whatever g, there is, for any value of the real number θ, a translated g' such that:

(∀t∈T), δ[t-θ] ⊗ g’=δ[t] ⊗ g,

 b) Structure based upon the existence of an initial instant

We have associated a closed set [t1,t2] ⊂T as a domain with any existing element g∈G. This
notion of domain must be explained. In fact, for the moment, the choice of the domain appears to be arbitrary:
whatever [t1,t2], it is possible to find [t’1,t’2] ≠ [t1,t2] where [t1,t2] ⊂ [t’1,t’2], and then substitute [t’1,t’2] for [t1,t2]
without calling into question the stated hypotheses. [t’1,t’2] is thus also a domain. To clear this indetermination,
we express the intuitive fact that after t1 “there is something happening” and that, after t2 “nothing is happening
anymore".

Let us consider the subset T’ of the instants t’ of [t1,t2] such that for any t’, δ[t’]•g=δ[t’]•g0.
Each t thus defined is enclosed in at least one open set whose intersection with [t1,t2] does not contain any other
element of T’. Intuitively, the instants such as t’ are “isolated" within the domain of the process:

 hyp. 15: There is at least one open set Ot’ containing t’ such that for any t∈ Ot∩[t1,t2] and t≠t’,
 δ[t]•g ≠ g0

 - Comments

t1 and t2, the left and right borders of the domain can be elements of T’.

 Example 32: If the process is a variation in electric voltage u(), the hypothesis means that u(t1)=0 but that immediately after and for
a non-zero duration (t)≠0. The hypothesis brings mathematical rigour to physical fuzziness. Any computer specialist
having used industrial instrumentation knows that, beyond a certain accuracy threshold, it is difficult to locate the

 Theoretical elements (Gold frame)

 System Modelling 29

initial instant of the occurrence of an electric signal. This imprecision was one of the main causes for the abandonment
of the “single-slope” analogue converter in benefit of the "dual-slope" converter eliminating this drawback.

Let g and g’ be two elements of G having respectively [τ1,τ2] et [τ’1,τ’2] as domains; g and g’
are equivalents if and only if their respective domains have the same initial instant which is their common lower
bound: τ1 = τ’1 = τ; Let us designate as ρ’ the equivalence relation based upon this property; the quotient set is
noted as: Γ’ = F/ρ’.

 c) Properties common to the two structures

Hereafter we shall use the notation Γ’ = {γ’t}; intuitively γ’t is the class of all g having the
same « srating time » t ; γ’0 is in particular the element of Γ’ associated with the instant 0; let us note γ’0 = {g}
where g represents any g having 0 as starting time. By construction also, there is a bijection between any class γ’t
and Γ; let us choose class γ’0; any g represents a class of Γ. From these properties, there is obvious theorem.

 th. 2: Any t defines an operator Θt in Γ’ (Annexe, Page 61, dem. 1): Θt(γ’τ) = γ’t-τ.

2.3 Substrate space

2.3.1 Purpose

A process is a modelling element; it defines a structured collection of processes defined in
time except for a translation; the study of the general properties of this element is based upon the definition of
the substrate space.

2.3.2 Definitions

 def. 4: Any class, element of Γ’, constitutes a substrate element.
 def. 5: Conventionally, we choose the class associated with the instant 0. This class is the substrate

space.

In the rest of the document we are using the notations:

{g} = G = γ’0 ∈ Γ’.

Class G=γ’0 is included in G, and the hypothesis relative to the observation (hyp. 13) is applica-
ble; it implies the existence of an application ο: ∆×G → G.

For any δ[τ1, τ2] ∈ ∆ and any g ∈ G having a domain [0, t2], there is g’∈G such that:

if τ∈[τ1, τ2] ∩ [0, t2] then δ[τ-τ1]⊗g’ = δ[τ] ⊗(δ[τ1, τ2] •g) = δ[τ]⊗g
if τ∉[τ1, τ2]∩ [0, t2] then δ[τ-τ1] ⊗ g’ = δ[τ] ⊗(δ[τ1, τ2] • g) = a0

The left bound of the domain of g’ is τ1 ; then g’ is an element of the class γ’τ1; τ1 defines an
operator Θτ1 in Γ’ such that: Θτ1(γ’τ1) = γ’0 = G. Consequently, g’ has an image g’ in G.

 th. 3: If g is a process, then g’ its observation,

 - obtained during an interval [τ1, τ2] and,
 - translated to the origin, is also an element of G:

 g’=δ[τ1, τ2] ο g∈G

Serge Savoysky
Barrer

Serge Savoysky
Texte de remplacement
tar

Theoretical elements (Gold frame)

System Modelling 30

2.3.3 Properties of substrate space

The following hypotheses and defini-
tions are given for the substrate space G conventionally
associated with the instant 0. They are immediately
applicable to any translated substrate space of the pre-
ceding and associated with any other instant t. Let us
consider: P(G), the set of subsets of G.

 a) Family of states

 def. 6: A substrate state g is a part X ∈P(G)
containing g.

 def. 7: Pg(G) is the family of the substrate
states associated with g: for any X ∈ Pg(G), g ∈ X,

The following two hypotheses enable us to assign a topological structure to the substrate
space.

 - Comments

This topological structure is not unique: other structures depending on the properties of the
elements may be introduced later. Depending on the particular physical properties of the represented entity, they
are not examined in this paragraph.

 b) Convergence

 hyp. 16: For any X and X’∈ Pg(G),
 there is an X’’ such that:

 X’’⊂X∩X’ and X’’ ∈ Pg(G).

The intersection of two substrate sta-
tes, elements of a given family, contain another sub-
strate state belonging to this family.

 - Comments

This hypothesis again states with
rigour an idealised physical fact.

 Example 33: Let us suppose that the same process g is observed with several carefully adjusted and calibrated observation systems
all giving an image of g in A. For example, the preceding electric voltage u() measured with several voltmeters. Each
image is a bundle in A×T. The above hypothesis means that all these bundles have a non-empty intersection; this
intersection can contain another bundle possibly produced by another observation system of better precision than the
preceding ones; the perfect image of g, indeterminable with full certainty, is somewhere within this latter bundle.

 c) Neighbourhood

 hyp. 17: For any X∈ Pg(G) and for any h ∈ X, there is Y⊂X with g ∈ Y and Y∈ Ph(G)

Ai

T

An

 State E

 State E’ ⊂ E

 Limit element g

Figure 14: Interpretation of notion of state

X

t

X’’

 g
X’

Figure 15: State families - convergence

 Theoretical elements (Gold frame)

 System Modelling 31

The collection of all the families defi-
nes a topology for G.

 d) Primitive element definition limits

The belonging of {g} to Pg(G) will be
discussed later; g is a limit element; {g} is a limit
state.. This is a hypothesis which, depending on
whether it is accepted or rejected, modifies the topo-
logical properties of the substrate space. Intuitively, the
hypothesis will be admitted for the construction of
models of real phenomena perceived through observa-
tion systems which yield only imperfect images.
Rejection will be used for the construction of models of
phenomena which are well controlled in their
occurrences, such as executions of numerical models; in

this case, the observation system could communicate an exact trace of the occurrence.

3 RECURSIVE ELEMENTS

3.1 Method and constructional principles

The theoretical elements examined
earlier are used in this chapter for the construction
of system models. Two approaches are possible.

 A) Analysis

The analysis of an entity shows
new entities. We first of all examine how theoretical
elements are used to express the models of these
entities which are:

 - produces,
 - devices.

The method of expressing the assembly of these entities is assimilated with synthesis.

 B) Synthesis

Given a collection of entities, synthesis consists in assembling these entities, possibly modi-
fied, and explaining their interactions. We examine how theoretical elements are used to form the morphology
and then the physiology of the new entity thus constructed.

These approaches are covered in detail in the following paragraphs.

 X∈Pg(G)

t Y⊂X
Y∈Ph(G)
Y∉Pg(G

 g
 h

Figure 16: Family of states - continuity

MORPHOLOGY

PHYSIOLOGY

exchanged
produces

Visible part

 Internal part

Figure 17: Analysis of an entity

Theoretical elements (Gold frame)

System Modelling 32

3.2 Elements for morphological design

3.2.1 General

There are two possibilities for obser-
ving the functioning of a physical entity:

 - There is an observation system allo-
wing a correspondence between any
instant and an instantaneous value in
the observation space. The entity is
then considered to be a produce

 - There is an observation system ena-
bling the preceding procedure for
produces placed at the input of the
physical entity as well as for produces
coming from its outputs. The entity is
then considered to be a device.

A procedure is a model describing the
general functioning rules of a produce or a device; a
procedure instantiation is a process. The notion of
component having different possible states is almost
universal. It appears at different moments of an analysis: a variable, a task, a program, the system itself are all
elements having this common physical property, independent of any other property. These two possibilities for
observing imply two ways for modelling. The theory of categories brings the required formal means to the repre-
sentation of these basic properties

3.2.2 Produce model

 a) Definitions

Given a family of processes, only some open sets X (see Fig. 14, Page 30) are of interest for
the study of this family. Consequently, we are assuming here that there is at least one condition Φ available for
defining a particular subset: S = Φ(P(G))⊂P(G).

 def. 8: Each element of S = Φ(P(G))⊂P(G) is a procedure state, chosen according to the condition:
 Φ: S = { X/X∈P(G) and Φ(X) = true }
 def. 9: A limit state is an open set in which each element differs very little from a particular element

g called the limit element or is reduced to this element.

Let us note that it is experimentally impossible to distinguish a limit element. Any means of
observation gives only knowledge of a limit state, the scattering of this limit state depending on the accuracy of
the observation means used. However, at this level of analysis, it is impossible, as we have already noted, to af-
firm or invalidate the belonging of g to S.

The theory of categories is used with the remark that there are relations between the states as-
signed to a procedure. Let us now consider a set of such states associated with a procedure. We assume that:

 hyp. 18: For any pair (Xα,Xβ) of states there is a set Mαβ of relations from Xα to Xβ; if α=β, this set is
reduced to the singleton formed by the identical relation; each relation is called a morphism;
For any (X’α,X’β), Mαβ = M’αβ implies that X’α = Xα and X’β = Xβ. In this study, any Mαβ is,
either empty, or a singleton having the element mαβ.

 hyp. 19: For any triplet (Xα,Xβ,Xχ) such as Mαβ ≠ ∅ and Mβχ ≠ ∅ and Mαχ ≠ ∅, there is a relation:
 mαβ × mβχ→ mαχ
 hyp. 20: The relation defined above is associative:
 (mαβ × mβχ) × mχδ = mαχ × mχδ = mαβ × (mβχ × mχδ) = mαβ × mβδ

Modelling (1)
(use of category)

Modelling (2)
(use of functor)

M
Produce (1) or

Device (2)

S

O

T

I

Figure 18: Two possibilities for observing and two objectives of
modelling

 Theoretical elements (Gold frame)

 System Modelling 33

These hypotheses concerning the properties of procedures are such that the notion of category
is utilizable as models for the states of procedures. The states are the objects of the category and the state chan-
ges are morphisms (Figure 19); ordinarily, the sets of morphisms in this case of application have at most an
element.

 b) Discussion on the continuity of states

 th. 4: The substrate space has the power of the continuous (Appendix, Page 61, dem. 3.).

The set of states has a power. This power depends on the definition of S. The set of states
which is a set of open subsets of the substrate space, may be either continuous or countable.

 c) Combination of produces

Let be a functionality F having several inputs Ii,
i = 1, …, n. If each Ii is a category, then the model of the compound
produce I1×…In is a product of categories (see: appendix).

We will use this property in the following section.

3.2.3 Device model

We shall examine first of all a simple functionality giving a transformation of a produce at the
input into an output produce. We represent the input (respectively the output) by an input category (respectively
an output category). We then assume that the functionality applies the objects of the input category (respectively
the morphisms) in the objects of the output category (respectively the morphisms).

 hyp. 21: We assume that the application carried out by the functionality complies with the axioms de-
fining a fonctor.

 A) Simple one-state device

 def. 10: The simple one-state device embeds a functionality defining a correspondence between the
inputs and the outputs.

The model of each input or of each output is a product of categories. The model of the func-
tionality is a fonctor; therewith the model of the simple one-state device is a fonctor.

 b) Compound one-state devices

We examine two simple compositions of simple one-state devices. The result is a device which
embeds:

 - either a serial assemblage of one state-devices

State_jState_i
Physical concepts

Theoretical
elements

Objectj = Morphismji (Objecti)

State change

Modelling

Figure 19: Approximative illustration of the relationships between physical concepts and theoretical elements (morphology)

F

I1×…In

In

I1

…

Figure 20: Compound produce

Theoretical elements (Gold frame)

System Modelling 34

 - either a parallel assemblage of one-state devices.

A collection of functionalities F1, …, Fn is a serial collection if the input Ii of any Fi (n ≥i>1) is
the output Oi-1 of Fi-1. The result is a functionality such that: F: I1→On.

 def. 11: The serial compound one-state device is a device which embeds a serial collection of func-
tionalities.

The model of this device is the fonctor F: I1→On.

A collection of functionalities F1, …, Fn is a parallel collection if any pair (Fi,Fj) of this collec-
tion exists without link30; The functionality F: (I1×…In) → (O1×…On) represents this collection.

 def. 12: The parallel compound one-state device is a device which embeds a parallel collection of
functionalities.

The model of this device is the fonctor F: (I1×…In) → (O1×…On).

 c) Multi-states device

A functionality may be a product having mul-
tiple states. This assumption is very usual in data processing
technologies. In this case, each state of the functioality may be
viewed as a simple functionality. We examine now the features
of a device embeding such a functionality F. F may be viewed as
a fonctor or as a caregory if we need to take in account its
different states. Let be:

 - F=({Fi}, {fji}), the category, model of the multi-states functionality; each Fi is a fonctor and
represents a simple-state functionality.

 - C=({Ci}, {cji}), a category, model of the input data used in order to control the states of F
 - I=({Ia}, {mba}), a category, model of the input of the device.
 - O’=({O’(ia)}, {n’(jb)(ia)}), a category, model of the output of the device.

We assume that:

 hyp. 22: it exists an one to one application between {Ci} and {Fi},
 hyp. 23: it exists an one to one application between {cji} and {fji},
 hyp. 24: O’ is a subcategory of a category O which has the following properties;
 hyp. 25: For any i and a, (Ci, Ia) → Oia = Fi (Ia);
 hyp. 26: For any (j,i) and (b,a),
 (cji, mba) → n(ji)(ba)
 and
 Ojb = n(ji)(ba)Oia
 = (cji, mba)(Fi(Ia))
 = (cjiFi)(mbaIa).

All these hypotheses allow the existence of a fonctor G: C×I→O’. This fonctor is the model of
the device embeding the multi-state functionality. Globaly, this device is a one-state functionality having the
product C×I as input and O’ as output.

Let us note that the last hypothesis (26) is not a universal property of the product of categories;
this hypothesis is restrictive for modelling any component of a system. At this point we can imagine, as we like,
some multi-state component losing the properties of fonctor. Then, the result is not a device; all the components
which embed recursively this item are also losing the properties of a fonctor and are not devices. Whe have not
been studying at this time the effects of such an arrangement; these effects transform certainly the conditions of
transportability and of interoperability and complicate their specifications. For that reason, the existence of
softwares available for checking in a system description the different possible lacks of fonctor properties.

 30 In practice, the check of this condition is often uneasy.

OI

C G

F

Figure 21: multiple states functionality

 Theoretical elements (Gold frame)

 System Modelling 35

 D) Special types of devices: The receiver, transmitter, connector

The model of the receiver, transmitter or connector is a procedure. This procedure is also a
fonctor; it specifies the criteria for the recognition of categories or generation of categories at the border of a
procedure. These are fonctors to the extent that generally they impose transformations on the categories men-
tioned in the section on the borders of the procedure.

 Example 34: A receiver receives a pulse train but, in each pulse, recognises only the rising edge. A transmitter transforms a pulse
train generated inside the procedure into a continuous signal whose frequency is that of the occurrences of the distinct
pulses.

3.2.4 Representation of fundamental properties

The category serves as a model for the produces; the fonctor serves as a model for the devices.

 A) Existence

A fonctor which establishes a relation between a product of categories and the category (false,
true).

 B) Temporal domain

For any category C and for any category limited to a single object θ ∈ T, an operator defines a
transformation: C → C’×θ

 Example 35: A sampler defines a category C’ having the same properties as C over the interval θ.

An operator is fundamentally the base of a rule of meta production indispensable in any system
description language:

operator: morphology → morphology

In a description, the operator allows a simple definition of a produce based on a type given by
modification of the domain.

 System / Subsystem

 Subsystem / Device

Device
Functionality :
invariant with

pre / post cond.

Product / Device

Physical concepts

Theoretical
elementsOutput_Category = Functor (Input_Category)

Modelling

Input

Output

Figuree 22: Approximative illustration of the relationships between physical concepts and theoretical elements (morphology)

Theoretical elements (Gold frame)

System Modelling 36

 C) Linkage

A fonctor intended to identify the links between I/Os of different procedures.

 Example 36: The "identical" fonctor used to specify that the inputs of one procedure are the outputs of another procedure and are
identical.

3.3 Elements for physiological design

3.3.1 General

The analysis of a system leads to the identification of its components. These components - de-
vices and produces - form the morphology of the system; this morphology evolves as the analysis progresses.
The notion of category serves as a model for the produces. Analysis determines the recognition of devices and
produces meeting the general characteristics of Figure 17. Modelling should make it possible, for each produce,
to specify its different possible states. It must allow, for each device, an account:

 - of the produces exchanged and of the morphological specifications imposed by the device on
these produces, possibly specifications relative to processing performed on these produces,

 - of its location in time.

 System / Subsystem

 Subsystem / Device

Device

Output

Functionality :
invariant with

pre / post cond.

Input

Space

 Absolute time scale

 Relative time scale inside

Product / Device

Event Event

Physical concepts

Theoretical
elements

Modelling

Process

Timed_Category = Timing_Operator (Category)
Timed_Functor = Timing_Operator (Functor)

(The product/device occurs and acts
since a begining instant until an other
instant.)

Figure 23: Approximative illustration of the relationships between physical concepts and theoretical elements (physiology)

 Theoretical elements (Gold frame)

 System Modelling 37

3.3.2 Command or Timing-operator

A command is a fundamental element of the meta-production rule:

command: morphology×time→physiology

This meta-production rule has two physical acceptations described by the following mathema-
tical models. The behaviour of a system is the definition of a temporal location of each active part of the system.
Any fonctor used in the definition of a behaviour transforms a given category C (see the Section « Produce
model », Page 32) into a other category C’ taking in account its location in time.This kind of fonctor is a com-
mand or a timing-operator. For any category C, two type of command are available.

 A) On/off command

Let be P(T) the set of the open subsets of T: P(T) = {]τi,τj[} and Θ the n-uple such that:
Θ = (]τi1,τj1[, …,]τin,τjn[) ∈ Pn(T)
with the condition: for any α and β, α ≠ β, 1≤α≤n, 1≤β≤n,]τiα,τjα [∩]τiβ,τjβ [= ∅.

Θ is a category; it models a sequence of disjointed windows along the time-scale; it has n ob-
jects: the intervals]τiα,τjα [(1≤α≤n); these objects are ordered and this relationship defines a morphism for each
pair of objects.

For any category C which models a static object, and for any category Θ which is the support
of the command, an On/Off command defines the produce: C’ = C×Θ. Each object of this category is a pair X’u
=(Xu,]τ iα,τ jα[); this pair means that :

 - each element g’ of X’u is the translation in time, from 0 to τ iα of an object g of Xu,
 - the left bound of the domain of each g, element of Xu is τ iα, and that each g is sampled after

this translation in time.

 B) Trigger or pulse-command

Let be P'(T) the set of the open subsets of T: P(T) = {]τi±ε [} and Θ’ the n-uple such that:
Θ’ = (]τ1±ε [, …,]τn±ε [) ∈ Pn(T) with the condition: for any i and j, i ≠ j, 1≤i≤n, 1≤j≤n, τi ≠ τj.
Θ’ is a category; it has n objects: the intervals]τi±ε [(1≤i≤n); these objects are ordered and

this relationship defines a morphism for each pair of objects.
The trigger transforms C into C’ = C×Θ’. Each object of this category is a pair X’u =(Xu,]τi±ε

[); this pair means that:

 - each element g’ of X’u is the translation in time, from 0 to τ i of an untimed element g of Xu,

τjατiα0

Xu

g

X’u

g’

Sampling
Translation in time

Figure 24 : ON/OFF command

Theoretical elements (Gold frame)

System Modelling 38

 - the left bound of the domain of each g’, element of Xu is τi, and g’ is equal to g after this
translation without sampling.

3.3.3 Temporal condition

Let us note that any command can be combined with a condition using T.

 Example 37: Activate a procedure at an instant t, generate a pulse at an instant t.

4 INTEROPERABILITY

The models of entities are assemblies of the previously described theoretical elements. The
properties of these assemblies result from the hypotheses and definitions proposed earlier. We shall be examin-
ing more particularly in this chapter the ability of the assembled entities to function interactively: they indicate
the physical consistency of the system.

The mathematical model enables this property to be studied by offering the means of distin-
guishing its different aspects. We shall thus be examining in particular the questions of interoperability and
portability, linking them with the examination of the consistency of the mathematical expressions of the entities
concerned.

As we stated earlier, interoperability is the ability of a procedure F’ to accept any produce sent
by another procedure F. Let O be the category sent by F, and I’ the category that can be received by F’. The
consistency between O and I’ exhibits different aspects. We shall attempt now to classify, to define some con-
sistency criteria between procedures acting interactively.

4.1 Morphological consistency

This notion is intrinsic to the pair (F, F’). Its modelling uses the mathematical concept of
universal element (Appendix, Page 60). Let I’° be a subcategory of I’; we propose:

τi0

Xu

g

X’u

g’

No sampling
Translation in time

Figure 25 : Trigger command

 Theoretical elements (Gold frame)

 System Modelling 39

 def. 13: Normal consistency. F and F’ are normally consistent for O and I’ if there is an abstract
fonctor Γ: O → I’° having at least one universal element . Γ defines a standard interface.

 def. 14: Adapted consistency F and F’ are adapted for O and I’ if there is a fonctor Γ*: I* → O*°
having at least one universal element such that (F, Γ*) and (Γ*,F’) are normally consistent. Γ*
defines an adapted interface.

4.2 Physiological consistency

This notion is concerned fundamentally with real time. It is intrinsic to the pair (F, F’) but
introduces time. Let us consider a closed set [τ1, τ2]; the set of open subsets included in [τ1, τ2] forms a cate-
gory. Since real time is physically invariant in our applications, every fonctor Γ transforms this category in itself
and conserves its morphisms. There is a universal element in this case which is [τ1, τ2]. For any τ, let us con-
sider the instantaneous open set [τ±ε] and f: [τ1, τ2] → [τ±ε]; for any [τ'±ε] there is a unique f such that: f ([τ1,
τ2]) = [τ’±ε]. If F and F’ are naturally consistent, f is such that [τ±ε] = [τ’±ε]; if F and F’ are not naturally con-
sistent, f depends on the artificial interface.

It is now possible that F and F’ are active in the different intervals: [τ1, τ2], [τ’1, τ’2].

 def. 15: Physiological interoperability exists if:
 - F and F’ are consistent,
 - [τ’±ε] ⊂ [τ’1, τ’2].

5 PORTABILITY

The notion of portability can be expressed in the theory of categories. In the following propo-
sition we use the mathematical notion of natural transformation (Appendix, Page 59). An even superficial exa-
mination of portability shows the complexity of this notion, owing to the existence of what we conventionally
call the service layers. The following proposition is thus only a theoretical element applicable to a physical sys-
tem element; this theoretical element is thus available for the construction of a complete model specific to each
case examined; it is not a universal model.

Let us consider two platforms “m” and “n”; we shall assume in our proposal that the binary
element configurations used to store information have the same number of elements in m and in n and that m
and n have the same number of such configurations31. Let us consider an application (computer) S and its im-
plementation Sm in the platform m (resp. Sn in n). Sm and Sn are fonctors. The common input of these imple-
mentations is a category C situated at the level of the user (for example, a record on a user's data disk). We thus
assume here that Sm and Sn include the components allowing the implementation of C in the different platforms.
The outputs Sm(C) and Sn(C) are respectively in accordance with the specifications of platforms which support
the applications. If C’ is the category formed by the ordered set of all the possible combinations of valorised
binary element configurations of m or n, Sm(C) and Sn(C) are subcategories generally different from C’.

Using the notion de natural transformation, we express the portability of S from m to n by the
existence of a relation between the installed applications Sm and Sn, leading to a relation between the outputs
Sm(C) and Sn(C) for any input C.

 31 This proposition is a simplified example and not an exhaustive study of the subject.

Theoretical elements (Gold frame)

System Modelling 40

τ: Sm → Sn.

n (X)τx

n (Y)τy
m (Y)

n (f)m (f)

m (X)

 def. 16: The above diagram defines an oriented elementary portability from Sm to Sn (go only).

 th. 5: In order for the elementary portability to be reversible between Sm and Sn, it is necessary and
sufficient for all the morphisms τ to be invertibles (go and return).

6 CONCLUSION

This part concerned the use of mathematics for system modelling: we have given an overview
of some simple physical evidences as we perceive them, and we have consequently proposed their mathematical
representations as we imagine them.

In any other usual scientific or technical domain of applied mathematics, anyone, who has
been studying about mathematical modelling elements, will have been fascinated by the power of these tools, for
discerning and enlightening the properties of the examined physical objects; furthermore these tools avail the
growth of design techniques for engineering which gain gradually a consensus from the users and finally lead
common practices for technicians who are not mathematicians. An example is given by the finite elements
method which was a subject for mathematician at the end of the years fifty and is nowadays an usual tool in all
engineering offices and lays the foundation of many civil engineering standards.

The various processes whereby these common practices emerge and evolve are complex. We
recognise entirely their end results without explanation. The conclusion is that we must keep in mind the exis-
tence of many theoretical researchs undertaken by teams in numerous laboratories and we suggest finally to take
them into account in our standardisation activities.We have established the possibility of associating a model
with a physical system as well as with each entity recognised in its composition. This model is an assembly of
morphological and physiological assertions; such an assembly may comprise several thousand assertions.

The value of mathematics, namely that it produces models which are condensed in terms of
expression but rich in terms of meaning, thus appears to be absent from this approach. Reasoning with a model

Plateform « n »Plateform « m »

n m

 Y

 X

 n(Y) Y

 n(X)m(X) X

m(Y)

 C

 f

 n(f) m(f)

 τY

 τX

Fig. 26: Portability

 Theoretical elements (Gold frame)

 System Modelling 41

having such a number of relations is humanly impossible: for example, the simple search for contradictions
which could mean potential functioning errors is excluded.

Such formal verifications by reasoning become possible with the assistance of the computer.
Classical notations are unfortunately inappropriate. The search for a formal, computer-readable language whose
elements and assemblies have the same semantics as the usual mathematical language is thus required. This
search can be based upon existing description languages.

It forms the subject of the next part.

 43 System Modelling

PART 4
DESCRIPTION LANGUAGE (IRON FRAME)

Toute interdisciplinarité réelle passe par l’édification
d’un langage commun qui puisse exprimer les divers
moyens théoriques en usage dans les disciplines les plus
variées.
René Thom32. Logos Phoenix, Modèles mathématiques
de la morphogénèse, Bourgoi, Paris, 1980, p.295.

1 GENERAL

During the eighteenth century the existence of such an universal scientific language was soon
supposed by Leibnitz. Unfortunately, Leibnitz papers tell us almost nothing about that. It is one of the most fa-
mous enigma of mathematics history. We can say nowadays that the binary formalism discovered or re-discov-
ered by Leibnitz is perhaps the basis of this hypothetical language. The conclusion to which we are coming since
the beginning of computers era is that in the present state of the technology, binary language is obviously at the
lowest level, the only universal language with which any problem of calculation must be expressed and solved;
nevertheless, in practice, it is easily readable and understandable only by computer and never by human mind.

While we have this language in view, and while we must leave for the present the study of the
conditions under which it may be designed, we should just consider for a moment what we mean by the concept
of global description.

At the present day no known high level language, that means readable by computer and un-
dersantable by human mind, possesses without restriction the property of universality. The theory of category
underlies the precedent definitions. The theory of category is an algebra; thus it is a logical theory and the axi-
oms, definitions and theorems of fundamental logic are available and therefore must be applied.

A description language is one of the most important items of a CSMF. Consequently, the
CSMF standard must provide for these languages:

 - A general primary formalism allowing an unitary basic structure.
 - General specifications for their capabilities.
 - Criteria for checking the compliance of the features of a particular language with the preceding

specifications.

The purpose of this chapter is to study the problems concerning the description languages. The
first paragraph proposes a simple primary formalism for expressing, at the lowest level, the concepts of CSMF
standard and their possible assemblages. The second paragraph examines how that language may be used as a
meta-language for producing description languages. In compliance with the primary formalism, the third
paragraph gives in natural language some general specifications for the description languages.

 32 Fields Medal, 1958.

Description language (Iron frame)

System Modelling 44

2 PRIMARY FORMALISM (STONE FRAME)

2.1 Objectives

The purpose of this paragraph is the definition of a primary formalism without ambiguity. This
formalism must be viewed firstly as a language a the lowest level ; consequently, it must have only a reduced set
of notions and a reduced set of rules. Then, this primitive formalism will be used uniquely for expressing strictly
the physical concepts defined informally in the preceding chapter and the relationships between these concepts.
It must be consistent with the mathematical elements defined in the next chapter.

This low level formalism cannot be used for the description of systems. Hereafter, the notions
and rules of this low level formalism will be used, for that purpose, as a frame for defining description langua-
ges. Then, it may be viewed also as a general and formal specification of description languages.

2.2 General features

This formalism is a direct application of set theory. It uses the habitual notations of this theory:

 - braces enclose a repeated item; the item may appear zero or more times; each occurrence of the
repeated item is distinct from the other occurrences.

 - ∩, ∪, × represent respectively intersection, reunion and scalar product; Π represents a scalar
product having an undetermined finite list of terms.

 - ∅ is the empty set.
 - The chain,
 « <expression_1>: <expression_2> → <expression- 3>»
 means:
 <expression_1> represents an application from
 <expression_2>
 into
 <expression_3>.
 - In addition in any definition, the symbol «::= » means « is », and the symbol « -- »

precedes a informal comment enclosed inside the formal text.

From a mathematical point of view, {item} represents the classical set of element « item »
which is a list of sentences in the spirit of this chapter.

2.3 Primary notions

The terms expressed below are the primitive terms of the formalism. They express both:

 - either a concept;
 - either a set of sentences associated with the concept, whose elements complies with the con-

cept.

For each word, the existence of the expressed concept is an axiom of the primary formalism.
Likewise the existence of the concept, which is expressed by the word « point », is an axiom of geometry. Be-
sides, each word, from (1) to (8), represents any possible element of a set, and likewise the word « point » rep-
resents the elements of a geometrical space.

 (1) morphological_item::=

 Description language (Iron frame)

 System Modelling 45

 (2) morphological_typology _template⏐
 (3) morphological_genealogy _ancestor⏐
 (4) elementary_object

 (5) physiological_item::=
 (6) physiological_typology _template⏐
 (7) physiological_genealogy _ancestor⏐
 (8) action_specification

2.4 Compound notions

 (9) morphology::= {morphological_item}⏐

 morphology∩morphology ⏐

 morphology∪morphology ⏐

 morphology×morphology
 -- Figure 28, Page 46

 (10) physiology::= {physiological_item}⏐

 physiology∩physiology⏐

physiology∪physiology⏐

physiology×physiology
 -- Figure 29, Page 46

 (11) visible_morphology::= morphology
 (12) internal_morphology::= morphology

 (13) normal_physiology::= physiology
 (14) exceptional_physiology::=

physiology
 (15) object::= morphological_item |

 visible_morphology ∪internal_morphology ∪normal_physiology

∪exceptional_physiology

2.5 Primary rules

 (16) time::= object

 (17) morphological_production_rule::= morphology ⏐ operator: morphology→morphology

 (18) physiological_production_rule::= command: morphology×time→physiology

 object: morphological_item

 exceptional_physiology:

 normal_physiology:

 internal_morphology:

 visible_morphology:

|

∪

∪

∪

 physiology

 physiology

 morphology

 morphology

Figure 27: Object

Description language (Iron frame)

System Modelling 46

3 SPECIFICATION OF DESCRIPTION LANGUAGES

A description language is a formal tool which can actually express systems and must conform
with a specification.

To express something in this field of activity means to ship description of physical system bet-
ween human cognition and computer artificial mind. A computer needs an immuable rigor at any level of in-
formation, within the expression of any system, in order to well scan this expression. Yet, the human cognition
involves, some other supplementary features for describing its knowledge of a system or well acquiring it; for
example the possibility to emphasise away in time or place some global aspects of a description without erosion
for the others, particularly those abundant of the deepest level of detail.

Consequently, there is an outline of a set of specifications for defining system description lan-
guage. All these specifications are consistent with the frame given by the primitive formalism: this mathemùa-
tical origin is a garantee for the rigor. Some others introduce the features wich are necessary for the ease of
human mind, without change for the prevalent rigor.

Spec. 1 High level descriptive language with semantic and syntax based upon a sound abstract forma-
lism: the descriptions using this language may be processed for formal validation.

Spec. 2 The language must allow global descriptions of objects belonging to different subject areas
(multidisciplinarity). The concept of global description is defined in the formalism.

 morphology::=

 morphological_item::=

|

|

 object

 morphological_typology_template

 morphological_genealogy_ancestor

 morphology ∩ morphology

 morphology ∪ morphology

 morphology × morphology

 |

 |

 |

{ }

Figure 28: Map of morphological concepts

 physiology::=:

{

 physiological_item::=

}|

|
 action_specification

 physiological_typology_template

 physiological_genealogy_ancestor

physiology ∩ physiology

physiology ∪ physiology

physiology × physiology

|

|

|

Figure 29: Map of physiological concepts

 Description language (Iron frame)

 System Modelling 47

Comment on
Spec. 2

The CSMF standard must specify languages for expressing objects whatever their respective origins. An object may be:
simple data, signal (analogue voltage transmitted through a cable, configuration of binary elements transmitted through
a BUS, …), a program, a hardware device, a machine tool, etc.

Spec. 3 The language must allow the description of collection of objects

Spec. 4 The language must allow the description of a set of objects.
Comment on
Spec. 4

This item has two aspects:

- The set may be an existing collection.
- The set may be directly defined by collectivising properties. Then it is a template for defining any particular object
having these properties.

Spec. 5 The language must allow the description of a generic family of objects.

Spec. 6 For any given object belonging to a particular subject area, the language, if necessary must
embed, a more detailed description using specific language.

Spec. 7 For any given object, in assistance of a top-down analysis, the language must allow the ex-
pression of the collection of the lower level objects which compose this given object (analysis
of an object morphology).

Comment on
Spec. 7

The analysis of an object implies to examine how the existing lower level objects can act. Three cases are possible:

- This question does not matter immediately.
- The definitions of the lower level objects are sufficient to ensure a complete definition of the behaviour of the
synthesised object.
- These definitions are insufficient. Then a set of behavioural rules must be stated in order to complete the description
of the synthesised object. This implies the spec. n° 10

Spec. 8 For any given collection of objects, in assistance of a bottom-up analysis, the language must
allow the description of any upper-level object having this collection as morphology (synthesis
of an object morphology).

Comment on
Spec. 8

The synthesis of an object is obtained whenever other objects are gathered in order to form its morphology. It is then
necessary to examine how the combination of these objects can act. Two cases are possible:

- The definitions of the lower level object behaviours are sufficient to ensure a complete definition of the behaviour of
the synthesised object.
- These definitions are insufficient. Then a set of behavioural rules must be stated in order to complete the description
of the synthesised object. This implies the spec. n° 10

Spec. 9 For any system, the respect of the specification 7 and of the specification 8 implies the avail-
ability of the language for the description of objects belonging to different levels of details.

Comment on
Spec. 9

The concepts of macro-description and micro-description must be introduced there.

- Example of macro description: the description of cooperating workshops in an enterprise..
- Example of micro description: the description of a hardware device.

Spec. 10 For any given collection of interacting objects, the language must allow the expression of the
conditional, or unconditional temporal rules, of their individual actions and of their interac-
tions (physiology of the collection).

Comment on
Spec. 10

If the given collection constitutes the morphology of an object, then these rules complete the definition of its
behaviour.

Spec. 11 For any given object, the language must allow the definition of a time interval supporting the
description of the object.

Comment on
Spec. 11

This time interval is somewhere upon the real time scale. It is the purpose of the behavioural rules to indicate the mo-
ment (« lower bound of the interval ») from which the object acts (use of trigger, on/off actuator, …).

Spec. 12 For any given object, the language must allow the definition of a space location belonging to
the description of the object.

Spec. 13 For any given object, the language must allow the topological33 description of its set of states
within the time interval supporting the definition of the object.

Comment on
Spec. 13

The set of the states of an object may be continuous or discrete.

 33 In this specification the word « topological » deals with the mathematical structure; it does not comply with the

definition of IRDS which is too restrictive (bibliogr.: IRDS - part1, p.94).

Description language (Iron frame)

System Modelling 48

Spec. 14 For any given object, the language must allow the description of the changes of states and of
the association of changes of states.

Comment on
Spec. 14

The state of an object is an object itself. Then a collection of objects completed with a set of rules of changes for each
pair of objects constitutes a new object.

Spec. 15 The language must allow the description of objects processing other objects. A given object
may be, both, an object processing other objects, or an object being processed by an other ob-
ject.

Comment on
Spec. 15

Particularly, two important Examples must be emphasised:

- The transformation of an object having a continuous time support into an other object having a discrete set of time
supports (sampling).
- The transformation of an object having a continuous set of states in an other object having a discrete set of states
(« quantifying »).

Spec. 16 For any given processing object the language must allow the specification of the exchanges
between this object and its environment.

4 PRODUCTION OF LANGUAGES

4.1 General

The efficient designer of system description must be attentive of many properties of the des-
cribed system, but his first concern should be to frame his description elements so that they convey the exact
meaning intended. For that purpose, any CSMF must contain a formal description language. This kind of lan-
guage is usually provided by the used CSMF. We have now to establish a mechanism for validating such a lan-
guage in respect to the primary formalism.

4.2 Rules of meta-production

Many different descrip-
tion languages are available in IT. This pa-
ragraph proposes a mechanism for attemp-
ting to link any language definition with
the primary formalism of the CSMF stan-
dard. For that purpose, the notions and the
rules of the primary formalism are used as
meta-notions and meta-rules. Then some
rules, named « rules of meta-production »,
must be defined especially for any descrip-
tion language L, for linking it with the
primary formalism. These meta-rules
transform the meta-notion in notions
belonging to L. Similarly they transform
the meta-rules in rules belonging to L.

 Description language
 « DL »

 Meta rule « MN & MR »

Meta notion Meta notion

 Level of CSMF

 Level of CSMF
standard

 Rule of meta production « R of MP »

Figure 30: Language design

 Description language (Iron frame)

 System Modelling 49

4.3 Conformity criterion

The possibility of defining a set of such rules of meta-production for each given language L is
unprovable. In addition, if the primary formalism is an element of the CSMF standard, this possibility is a cri-
terion for proving the compliance of the examined language with the CSMF standard.

An example of description language is given in the Appendix IV, page 63. This language was
defined more than ten years before this study. We will attempt now in this appendix to link its definition with
the primary formalism defined in this part.

Conclusion

System Modelling 50

PART 5

CONCLUSION

The introductory quotation from Leibnitz placed before the theoretical elements (3rd part)
shows how old this idea is: create a universal language for the statement of any problem and as a medium for
solution by reasoning. In his correspondence, Leibnitz often affirmed the existence of this language but did hand
down anything to us. With respectful irony, René Thom qualifies this vision today as an « old Leibnitzian
dream ». He however suggests, seriously, that the only language having these virtues could quite simply be
mathematics.

The study was carried out based upon this idea. In terms of results, it proposes a triptych: a
pragmatic method for analysing and modelling information systems based on a catalogue of physical concepts;
then, theoretical elements supporting their mathematical modelling; finally, a language for expressing the
models built by means of this method and this means.

Physical concepts

In this approach, the method remains the primary element. We shall rapidly conclude on this
subject because the classicism of its elaboration and its results call for few comments. Through a set of physical
concepts, the method sets forth a vision of information systems based upon long experience with such systems in
scientific and industrial circles. This experience was acquired by personal work and reinforced by the contri-
bution of colleagues working along the same lines. It is however restricted in the end to a field of application
with boundaries that are still somewhat fuzzy. Such is the fate of all scientific investigation methods: only long
usage will make it possible to solidly assess their value and to determine their limits gradually, as work pro-
gresses and years go by.

Theoretical elements

Our hope now is that the models thus devised will become useful, if not indispensable data for
reasoning on the properties of the physical systems investigated. The complexity and the size of the models re-
sulting from the method previously described require a precise and rigorous expression and practically call for
the use of powerful information processing facilities.

The chosen means of expression is mathematical modelling. It is a sufficiently powerful tool to
meet the requirements of the method and follow the experiences of pragmatic models. Mathematics brings or
takes nothing from the assumed fidelity of any model built by means of physical concepts, with regard to the
physical being that it represents. The virtues of mathematical modelling lie essentially in the precision and rigor
of its definitions, its constructions, and its notations: communication and reasoning, essential parts of any
subsequent work, are now based on models void of ambiguity. These models form a family whose general prop-
erties have been presented extensively in the part of the study devoted to them.

Information processing facilities are processing systems omnipresent today but have a basic
characteristic that must be pointed out here: they are systems with a behaviour that is discrete with respect to
time and processing only discrete data sets.

What, now, is the possible use of mathematical models? The following proposals concern ex-
clusively any mathematical model of the type proposed in this study and its use as data for computer processing
facilities.

For this purpose, let us return for a moment to a classical engineering problem. We all know
that the bugbear of a designer or of a system manager is the risk of failures. The identification and nature of
possible failures, their causes and their effects are thus of major concern. Simulation techniques provide certain
presumptions in this respect during the validation of the systems but never any absolute certainty. Some inves-
tigators have consequently turned to methods of formal expertise executed on mathematical models. This is done
currently in other areas: a mathematical model, if it is reliable, expresses the qualities of the physical world, its
advantages, its drawbacks and, in our case, potential system malfunctioning. Let us briefly examine the nature of
the work that can be executed by means of models we know how to build.

Two activities must be distinguished in this examination: that of the mathematician and that of
the engineer.

 Conclusion

 System Modelling 51

Let us begin with the mathematician’s activity and let us consider anyone of the mathematical
models concerned.

Let us first eliminate the possibility of any gratuitous disrespect for mathematics in the con-
struction of the model. What is involved would be purely errors of writing. The element of the model having
such a fault is most currently void of any meaning; compilers exist ordinarily to detect such errors. There is still
the exceptional case in which this disrespect could lead, by extraordinary chance, to a mathematically correct
expression which is whimsical in its relations with the modelled physical object. The model would then be like
the many other models resulting from imperfect observations of reality, both mathematically correct and physi-
cally incorrect. The validation of the models is in fact the function designed to locate and reduce such defects;
this classical function forms part of engineering.

After having rid the mathematical model of any mistakes on the part of the writer, we can now
assume that there is formal perfection; we have a set of assertions, of complex structure, concerning the physical
properties of the investigated system. And, experience warns us that these assertions may contain other
contradictions, despite all the preceding precautions. This is even a quite frequent and obviously troublesome
case. The formal rectitude of the model now being established, it is the physical rectitude of the physical system
that must checked. Guided by these contradictions, unjustly scorned, one generally then discovers latent and
insidious risks of inconsistent behaviour, failures and even disasters. It is thus important to reveal and study any
contradictions of a mathematical model because they reveal latent ills of the physical system. What procedure
shall we use?

We have distinguished two parts in a pragmatic model, conserved in the mathematical model:

 - the primary morphology which determines the direct descendants of the modelled physical
object;

 - the primary physiology which determines the rules of activity of these descendants.

Each descendent is also a physical object capable of being modelled in the same manner, and
so on. The reader is referred to the part devoted to physical concepts for details on these definitions.

Primary morphology and physiology are both sets of assertions.
Primary morphology that results from a first analysis of the physical object is a finite sequence

of assertions, each meaning intuitively: « x, of the X type, exists ». Each assertion is a true proposition by con-
struction; their sequence represents their conjunction meaning intuitively:

« (a of the A type exists) and (b of the B type exists) and… (z of the Z type exists) ».
The primary morphology is thus globally a true proposition. Consequently, we do not find the

contradictions, if they exist, at this modelling level. This assurance is unfortunately of limited value because a
primary morphology is only a sort of first inventory determining an initial collection of inert objects whose fine
descriptions and animations still remain to be created.

A physical object has different behaviour possibilities that have been modelled using the state
concept. To each object corresponds a collection of possible states. The purpose of primary physiology is to de-
fine, for each object, the associated primary morphology, the temporal and non-temporal rules of occurrence of
these states. Each rule is an action. The legitimacy of these rules does not belong to the world of mathematics; it
is an engineering matter. On the other hand, these multiple rules may be gratuitously contradictory in the
determination of the state of an object, the different states mutually excluding themselves, and legitimately in
this mathematical modelling technique. These contradictions are generally concealed by the overlapping of as-
sertions resulting from the recursiveness of the modelling technique.

Let us review intuitively here, by simplifying to the utmost, the two basic meanings of an ac-
tion:

« if « condition C » then at t « state(a)=Ai » otherwise at t’ « state(a)=Aj » » (pulse mode)
« if « condition C » then « from t1 to t2 « state(a)=Ai » » otherwise « from t’1 to t’2

« state(a)=Aj » » » (on/off mode).
A model is not a theory in which the different assertions are axioms or theorems deduced from

axioms according to the rules of logic. Any relations between assertions express formally a physical reality,
which is what distinguishes the model from a demonstration. In particular, the different actions are independent
if the physical behaviours represented are independent. On the other hand, they are related by relations
translating the relations between the physical components, if necessary. As in any human construction, a system
is fallible, and the modelled system may exhibit conceptual errors translated into the model by inconsistencies

The search for contradiction is theoretically simple: for each state « Ai » of an object « a » and
for all the actions governing this state directly or indirectly, its characteristic domain is constructed in the space
made up of parameters that are involved in its determination. This characteristic domain is the domain « Di » of
which « state (a) =Ai » as a function of these parameters. In order for there to be no contradiction between the
assertions determining any « Ai » and « Aj » couple with respect to time, it is necessary and sufficient for the

Conclusion

System Modelling 52

intersections of the characteristic domains « Di » and « Dj » of these states by the same « plane » to be disjointed
whatever t.

Practical research is far more difficult. Determining the intersection of two domains varying
with respect to time is possible only if the domains are themselves determined. As processing facilities are
digital machines, these domains need only be calculable. And, time and any object « a » are objects that may
have complex structures: their respective sets of states may be chosen independently as continuous or discrete
depending on modelling requirements. Their calculability at any instant is therefore impossible in the general
case. There is in fact a countable, finite and often even highly populated set of calculable cases, but it always
remains a set having the power of the continuum of noncalculable cases. The question of knowing whether the
countable and finite set of calculable cases is sufficient to provide a satisfactory answer is a question difficult to
analyse numerically. It is a sort of discretization of the system into finite elements whose validity, when the so-
lution is found, is an engineering problem34.

The severity of this diagnosis is compensated by the fact that certain families of physical sys-
tems have models whose properties restrict the problem: for example, so-called discrete sequential systems for
which the time and the set of values are discretized. In this case, the assertions are always calculable in principle,
and it is then possible to hope to find partial solutions, some of which are in fact found. The accumulation of
such solutions and the fact that knowledge on the subject is growing with the years induces the researcher to
continue along these lines but should not obscure the theoretical possibility of finding a general solution with
numerical processing facilities.

This approach brings us to engineering because it depends on the existence of system families
for which its results can be validated.

The examination of the engineer’s viewpoint is limited to the examination of two frequent ex-
emplary cases.

The first example is the verification of the compatibility of input and output specifications in
the exchange of products between the elements of a system. In a large system, this is typically the first source of
failures, which may very reasonably be confined by a systematic examination in the mathematical model of all
the morphological conditions of exchanges. This is where it is possible to find the grain of sand forgotten and
which will later and quite unexpectedly jam the entire system! By « morphological condition » is meant any
specification involved in the definition of a product when it is transmitted and then received. Such an inspection
quickly becomes humanly impossible, whereas it can be validly performed by software, not only during the
design of the system but also after all the maintenance and upgrading operations which affect its morphology.

The second example is the mutual waiting for two physiologies at a meeting point: an action
« a » in one physiology « A » waits for an action « b » in another physiology « B » to be terminated and vice
versa. Petri network specialists will recognise this as an example of a partial subgraph which is easy to correct,
when one knows where it is hidden. This is a frequent case in complex evolving systems and, as in the preceding
case, having a model that evolves with the system makes it possible to locate many points of such blockage.

 Language

Then there is the question of language. Language is designed for the writing of texts easily
legible by individuals and machines, while also faithfully expressing the mathematical models.

When the theoretical elements are acknowledged, the definition of the language must comply
with the following specification: its vocabulary and its syntax must present faithfully and exhaustively the ele-
ments of the theory. This is a stringent rule but practical solutions are possible. In fact, while remaining within
the strict framework of this specification, the definition of a language, i.e. of a formal system of notations, has
no limits other than those of the imagination.

However, the remark just made with respect to standardisation work has the utility of defining
a standard language whose legibility would not necessarily be the main quality. Its purpose would be to serve as
an intermediary for any translation of a model expressed in a language based on theoretical elements into an
expression in another language different in its appearance, but also complying with the same theoretical ele-
ments. This provision favours the creation of languages specific to certain scientific or technical disciplines, the
existence of which becomes inevitable owing to the multidisciplinary nature of the systems examined.

Finally, it is noted that the number of problems raised following this study exceeds that of the
few questions for which we propose a solution. Having completed this stage, let us put down our instruments.
We can take our closing words from either of two great French mathematicians, as the reader chooses.

 34 Let us note that Shannon’s theorem provides an answer to this question for certain objects: signals.

 Conclusion

 System Modelling 53

The first, Bézout, has a style which shows his era. The intense jubilation of having completed
something is difficult to hide behind the extreme modesty of pronouncements befitting a decent man of the 18th
century.

Nous nous estimerons heureux si considérant le point où nous avons pris les choses, et celui
où nous les amenons, on trouve que nous avons acuité une partie du tribut que tout homme
doit à la société dans l’état où il se trouve placé.35
(We shall regard ourselves as fortunate if, considering the point at which we took things over,
and the point to which we shall take them, it is found that we have completed part of the trib-
ute that any individual owes to society.)

The second, which is contemporary because it has to do with Laurent Schwartz, expresses
equal satisfaction, judging from the last, clear and limpid line of one of his many valuable works:

Ouf !36
(Phew!)

 35 M. Bézout. Théorie générale des équations algèbriques. Préface.1779.
 36 Laurent Schwartz. Cours d’analyse. Ecole Polytechnique.

 54 System Modelling

PART 6
APPENDIXES

I LIST OF DEFINITIONS

Action
SC21 7054

Something which happens.
…
Notes -1: when used without qualification, action means « action occurrence ».
…

Action
IRDS - part1

An event whose agent (in this case, an actor) is volitional. Action is a relation among the fol-
lowing: a spatio-temporal location (i.e. a location in space and time); a volitional agent; a
phenomenon; an instrument; and an act. One or more elementary actions that, as a unit, change
a collection of sentences into another collection of sentences in the information base or
conceptual schema and/or make known a collection of sentences present in the information
base or conceptual schema. (Page 90).

Activity
SC21 7054

A single-headed directed acyclic graph of actions where occurrence of each action in the graph
is made possible by the occurrence of all immediately preceding actions.

Behaviour
SC21 7054

A specification of a set of activities.
…

Behaviour
SC21 9563
(LOTOS)

… is defined by the LOTOS behaviour expression associated with the process definition that
constitutes the object template. …
…

Behaviour
SC21 9563
(SDL)

The behaviour of a process/service is the set of all transitions of that process/service. …
…

Behaviour
SC21 9563
(Z, p.19)

The behaviour of an object in a given state is the set of all possible activities that may occur
from that state. ….
…

Behaviour
SC21 9563
(Estelle, p.25)

The behaviour of an object is determined by the set of all transitions of that object. …
…

Class
CSMF SOU-07

A class is an abstraction of objects having common properties. Such an object is called an in-
stance of the class. When an object is an instance of a class, we say the object belongs to the
class

Environment
EWOS/ETG 012
ISO TR 9007

(of information system). That part of the real world containing the users which exchange mes-
sages with the information system.

Inheritance

(p.961)

Inheritance is a mechanism for sharing code and behaviour. It allows to reuse the behaviour of
a class in the definition of new classes. Subclasses of a class inherit the operation of their par-
ent class and may add new operation and new instance variables.

Interface
EWOS/ETG 012
ISO 2382-1

A shared boundary between two functional units, defined by functional characteristics, com-
mon physical interconnection characteristics, signal characterisrics, or other characteristics, as
appropriate.

Interface
 (p.328)

… To work in a system, every product must comply with precise rules governing its intended
relationships with other products, with user software, and even wuth user interactions. Such
relationships are called interfaces. …

Interface
SC21 7054

An abstraction of the behaviour of an object obtained by considering only a specified subset of
the observable actions of that object.
…

Interoperability
EWOS/ETG 012
IEEE 729

The ability of two ore more systems to exchange information and to mutually use the infor-
mation that has been exchanged. (IEEE 729).

Interoperability
TSG1
IEEE 729

The ability of two ore more systems to exchange information and to mutually use the infor-
mation that has been exchanged. (IEEE 729).

Location
in space
SC21 7054

An interval of arbitrary size in space at which an atomic action can occur.

 Appendixes

 System Modelling 55

Location in time
SC21 7054

An interval of arbitrary size in time at which an atomic action can occur.

Location
SC21 7054

An interval of arbitrary size in time and space at which an atomic action can occur.

Object

Objects in programming languages are collections of operations that share a state.
…
The collection of methods of an object determines its interface and its behaviour.

Object

Object denotes the whole representation of an application data model. …

Object
SC21 7054

A model of an entity. An object is characterized by its behaviour and, dually, by its state (…)
…

Object
CSMF SOU-07

An object is a representation of a real world object. An Object has an identifier that identifies
itself in an application data model occurrence. …

Object
IRDS-part 1

Something toward which a cognitive act (i.e. a though) or an action is directed. A material
body in the mid-world.

Object
ISO/IEC JTC1
TC22 N1712

(External). Hardware and/or software unit that has a behaviour and interaction modes, with
Ada programs, defined by this standard

Object
ISO/IEC JTC1
TC22 N1712

(Logical). Conceptually, a software object that is created and associated with an external object
and that has an acccessor. [Software object is not defined in this document].

Portability
TSG-1

(Software). The ease with which software can be transferred from one application platform to
another.

Portability
EWOS/ETG 012
TSG-1

(Software). The ease with which software can be transfered from one information processing
system to another.

Portability
TSG-1

(Application). The ease with which an application can be transferred from one application
platform to another.

Portability
EWOS/ETG 012
TSG-1

(Application). The ease with which an application can be transferred from one application
platform to another.

Portability
EWOS/ETG 012
ISO-2382-1

(Program). The capability of a program to be executed on various types of data processing sys-
tems without converting it to a different language and with little or no modification.

Process
IRDS-part 1
ISO TR9007

A collection of activities performed in a set order on a prescribed set of constructs under the
constraint of rules.

State
SC21 7054

At a given instant in time, the condition of an object that determines the set of all sequences of
actions in which the object can take part.
…

System

(p.328)

…, a system appears as a coherent collection of products, both hardware and software. …

System
EWOS/ETG 012
OED

A set of connected things, parts, elements working together in a regular relation.
A set of connected things, parts, or elements working together to achieve a common objective.
Ordered set of ideas, concepts, principles.

System
BSI DD 210
OED

(business). A system which performs one or more of the tasks of one ore more business fun-
cions by transforming a set of inputs, using a set of rules and procedures, to produce a set of
outputs.

System
IRDS-part 1

A methodical or logical plan or arrangement governed by a set of principles, or business rules
and procedures.

Template
SC21 7054

The specification of the common features of a collection of objects.
…

Type
SC21 7054

(of an object). A predicate. An object is of the type, or satisfies the type, if the predicate holds
for the object.

Universe of Dis-
course
IRDS-1

Those entities and happenings of interest that have been, are or ever might be and about which
there exists a collection of represented information having a common understanding.

 57 System Modelling

II REVIEWS AND NOTES

II. 1 Category

This part concerns the use of the theory of categories. This theory is certainly one of the most
abstract approaches of modern algebra. The understanding of its axiomatic foundations is difficult but essential
for its strict overall use. In particular, the axioms distinguish two concepts: classes and sets, in order to avoid
certain well-known paradoxes of set theory.

Nevertheless, category theory introduces the restrictive notion of "small category", which is
simpler than the general notion of "category" and better suited to our needs. The following elements provide a
review of the theory which is sufficient for this project.

The modelling of a system generally requires the engineer to state his physical hypotheses
concerning the system; these hypotheses are assertions concerning the natural properties of the system, making it
possible to choose the abstract elements representing the concrete elements of the investigation domain. We
shall now examine how mathematical elements can be used for this purpose.

II.1.1 Definition

 def. 17: Consider an entity C37; this entity is a "small category" if we can assign the following prop-
erties to it38.

 a) Initial definitions

Considering,

 def. 18: a set: obj(C) = {X, Y, Z, … }; X,
Y, Z, … are the "objects" of C;

 def. 19: a set: mor (X,Y) = {f},
associated with any pair (X,Y) of
objects of C;

 each element f is a “morphism”
of the “domain” X towards the
“co-domain” Y and noted:

 f: X → Y

 In our study, this set is either
empty, either a singleton;

 def. 20: a function •: mor (X,Y)×
mor(Y,Z)→ mor(X,Z), associated with any triplet (X,Y,Z) such as mor(X,Y)≠∅and
mor(Y, Z) ≠∅ and mor(X, Z) ≠∅;

this function determines a composition:

 if f∈mor(X, Y) and g∈mor(Y, Z), then there is exactly one k∈mor(Y, Z) and k = g•f.

 37 Within the framework of the general theory of categories, this is a "small category".
 38 There are restrictions in the definition of a category: category theory uses the notion of “class” which is more general

than the notion of "set" and extends the notion of function to classes.

 W Z Y X

 h•(g•f)=(h•g)•f

 g•f

 h•g

 h f g

Figure 31: Category

Appendixes

System Modelling 58

 b) Axioms

 axiom 1: the composition • is associative;

 if f∈mor(X,Y) and,
 g∈mor(Y,Z) and,
 h∈mor(Z,W),
 then (h•g)•f=h•(g•f);

 axiom 2: for any element Y, there is a mor(Y,Y) having at least one element uY; this element is such
that:

 for any X and any f∈mor(X,Y) ≠∅,
 uY•f=f,
 and,
 for any Z and any g∈mor(Y,Z) ≠∅,
 g • uY = g

 c) Comment

In the definition (def 19), the case of the existence of an empty set of morphisms must be dis-
cussed.

If mor(X, Y)=∅ (resp. mor(Y, Z)=∅), then f (resp. g) is nonexistent; its composition with any
other morphism is consequently nonexistent. This circumstance is compatible with the axioms. Let us now
suppose that this mor(X, Y)≠∅ and mor(Y, Z)≠∅ but that mor(X, Z)=∅. This circumstance, possible in a mo-
del, leads to a contradiction with the existence of the composition law. The associativity axiom is contradicted,
and consequently the model is no longer a category.

II.1.2 Opposite category

 def. 21: Let C be a category. The opposite category Cop is such that:
 - obj(Cop) = obj(C);
 - there is a bijection between mor(X, Y) and morop(Y, X).

A mnemonic means of defining Cop consists in reversing all the arrows in the graphic repre-
sentation of C.

 Example 38: A series of data having a “skip+() function is a category if skip+ (0) and skip+ (n+m)=skip+ (m) • skip+ (n) are
defined. The opposite category is obtained with the function skip-().

II.1.3 Product of categories

Let C and C’ be two categories.

 def. 22: The product C’’ = C × C’ is such that:
 - obj(C’’) = obj(C) × obj(C’),
 - if f ∈ mor(X,Y) in C, and f’ ∈ mor(X’,Y’) in C’, then f’’ = (f,f’) ∈ mor((X,X’),(Y,Y’)),
 - if f ’’ ∈ mor(X’’,Y’’) and g’’ ∈ mor(Y’’,Z’’) in C’’, then h’’ = g’’•f’’ = ((g•f),(g’•f’)).

II.1.4 Ordered set

The ordered set is an example of an entity assimilable with a category; this example is essential
in our methodology.

Let us consider a set S = {X, Y, …}. S is ordered if there is a binary relation “ ≤ ” which is
transitive, associative and reflexive, and a set O⊂S×S such that:

 Appendixes

 System Modelling 59

O = {(X,Y)/ X≤Y}

 (i) If C is the entity, we declare that:
 - S=obj(C);
 - for any pair (X,Y)∈S×S there is mor(X,Y), which is either empty or equal to the singleton

{≤};
 - The transitivity of ≤ leads to the existence of:
 •: mor(X,Y)× mor(Y, Z) → mor(X, Z).

 (ii) Let us note that:
 - The transitivity of ≤ implies the associativity of •.
 - Reflexivity implies the existence of the singleton {uX } = mor (X,X) for any X∈S.

II. 2 Fonctor

II.2.1 Definition

 def. 23: Let F be an entity; this entity is a fonctor if we can assign the following properties to it.

 a) Notations

Let C and C’ be two categories and F an: obj(C) → obj(C’).
Let X and Y be any two categories of C and their respective images X’ and Y’ in the objects of

C’.

 b) Axioms

 axiom 3: for any couple (X, Y) F determines an application F: mor(X, Y) → mor(X’, Y’) with the
condition:
if Y = f.X, then Y’ = f’.X’ with f’ = F(m).

 axiom 4: F conserves the morphism composition law:
if k = g•f, then k’ = g’•f ’
The following equalities result from this axiom:
Z’ = k’.X’ = (g’•f ’).X’ = g’.Y’

 axiom 5: F conserves the associativity of the composition law:
if k’ = h’•g’•f’, then k’ = (h’•g’)• f’ = h’• (g’•f’)
The following equalities result from this axiom:
W’ = l’.X’ = (h’•g’•f’).X’ = (h’•g’).Y’ = h’.Z’

II.2.2 Natural transformation of a fonctor

 def. 24: Let F and G be two functions such that: F, G: C → C’. τ is a natural transformation if it as-
sociates with any X∈ obj(C) a morphism τx: F(X)→ G(X) such that for any f∈mor(X, Y) the
following diagram commutes:

G (X)τx

G (Y)τyF (Y)

G (f)F (f)

F (X)

Appendixes

System Modelling 60

II.2.3 Universal element

 def. 25: Consider a fonctor F: I → O. The objects of I and O are sets. A universal element F is a pair
(u, R) composed of an object R ∈ obj (I) and an element u ∈ F (R) having the following prop-
erty: for any object X ∈ obj (I) and any s ∈ F (X), there is a unique morphism f: R → X such
that F(f)u = s.

 Example 39: Consider two countable series having the number of records n: D={di}, N={ni}. Now consider a category C such that:
 obj(C)={N, D},
 mor(N, N) = mor(N, D) = mor(D, N) = mor(D, D) = {Ωi}.
 Any Ωi is a circular permutation matrix [ϖαβ] in which ϖαβ = 1 if α = β-i+1 (mod αmax), otherwise 0. These permuta-

tion matrices are composable and this composition is associative; the result is a cyclic permutation matrix; this
composition is associative. For any X (X = D or N), we say that Ωi: N → X selects exhaustively the record i in X. This
assertion is obviously analogous to Ωi: n1 → xi (= ni or di). We now state that N is a given permutation (not restricted
to a cyclic permutation) of mor(N, D): N appears as an index file for the file D.

 We give a transformation represented by the fonctor F. We choose F such that:
 F{Ωi} = {Ωi},
 any F(Ωi): F(N) → F(X) points to the record i in F(X).

II.2.4 Representation

 def. 26: Consider a fonctor F: I → O. The objects of I and O are sets. A representation for F is a pair
(R, ϕ) composed of an object R ∈ obj (I) and of a family of bjiections ϕX: morX(R → X) ≡
F(X).

The latter condition implies that, if ν1 = F(n1), then for any i, xi = F(Ωi)ν1. Consequently,
(ν1,N) is universal for F.

 Appendixes

 System Modelling 61

III DEMONSTRATIONS

 dem. 1: Temporal translation of a process

The processes, elements of γ’τ+t represent the same phenomena as the processes which are
elements of γ’τ to within a translation t with respect to time. Conversely, any value of t determines in Γ’ an op-
erator transforming each γ’τ into its translation γ’τ+t. Consequently, there is Γt: γ’τ → γ’τ+t.

In particular, for τ=0, Θt: γ’0 → γ’t.

 dem. 2: Sampling and quantization

 - τ∈[τ1, τ2] ∩[t1, t2]

Hypothesis 12 leads to: δ[τ] ⊗g’’ = δ[τ] ⊗ (δ [τ] •g’’);
Hypothesis 13 entails directly: δ [τ] ⊗ (δ[τ] •g’’) = δ[τ] ⊗ (δ[τ] •g);
Hypothesis 12 again leads to: δ[τ] ⊗ (δ[τ] •g) = δ[τ] ⊗g; consquently, the first relation is
demonstrated.

 - τ∉[τ1, τ2] ∩[t1, t2]

This condition leads to δ[τ] •g’’ = δ[τ] •g = δ[τ] •g0, which enables us to substitute g0 for g in
all the above relations; the second relation is thus also demonstrated.

 dem. 3: Topology of Γ’

By construction, there is a bjiection between T and Γ’; Γ’ consequently has the same topology
as T and consecutively the power of the continuum. Let us note this topology as TT(Γ’).

 dem. 4: Topology of substrate space

Let us consider a particular process g of domain [t1, t2]. For any interval [t1, τ2] included in the
preceding (or equal), there is g’’= ∆ [t1, τ2]•g. By construction, the set {g’’} has the same power as [t1, t2], i.e.
the power of the continuum; also by construction, the elements of {g’’}are moreover different two by two. But,
the definition of the equivalence relation ρ indicates that any element of {g’’} has an equivalent g’’ in γ’0; still
by construction, these elements are different two by two; their set {g’’}has at least the power of {g’’}. {g’’}is a
subset of γ’0; γ’0 thus has at least the power of the continuum.

 dem. 5: Portability

Let us note first of all that any symbol may be chosen in the definition 20 (Page 22); in parti-
cular, we can permute the symbols F and G without altering this definition.

 - The condition is sufficient:

If all the τX are invertible, the inversion of the morphisms leads to the plotting of diagrams
identical to that of the definition, allowing for the symbols chosen. The preceding remark means that we find the
definition of the natural transformation.

 - The condition is necessary:

Let us suppose that a single morphism is not invertible, for example τX: F(X)→ G(X). In this
case, the construction of the diagrams shows that the transformation is in conformity with the definition for τX
and τY and false for τX and τY

-1. The supposition leads to the impossibility of applying definition 22. The con-
dition is thus necessary.

 63 System Modelling

IV EXAMPLE OF LANGUAGE PRODUCTION

IV.1 General

There is an example of production of a description language named « Dad ». This example was
first published in its preliminary version in 198339. A revised version was proposed in an appendix of a report on
the use of Ada for system description. This report was submitted to the Commission of the European
Communittee in 1984 and published by the Cambridge University Press in 1985, under the title « Ada for spe-
cification: possibilities and limitations »40.

IV.2 Basic rules of production

The rules of production are those used in the definition of Ada in its first standardized ver-
sion41. The production rules for which we propose adaptations are given only after that introduction, labelled
with their initial reference. Within these new rules, the notions or the parts of notions chosen as the roots of the
extensions are indicated by capital letters. The meta-rules and rules of meta-production associated with these
roots are given in the two following sections.

IV.3 Rules of production

Bold-face references in the first column are paragraph numbers in the referenced Ada man-
ual41.

2.8. REFERENCE ::= REFERENCE’SYMBOL identifier [(argument-association

 {, argument-association})]
3.1. basic-

declaration
::= object-declaration

/ FLUX-declaration
/ DEVICE-declaration
/ PROCESS-declaration
/ exception-declaration
/ renaming-declaration
/ number-declaration
/ SUBFLUX-declaration
/ SYSTEM-declaration
/ generic-declaration
/ generic-instantiation
/ defered-constant-declaration

3.2. object-
declaration

::= identifier-list : [constant] SUBFLUX-indication
 [:= expression];
/ identifier-list: [constant] constrained-array-definition
 [:= expression];

3.3.1. FLUX-declaration ::= full-FLUX-declaration
/ incomplete-FLUX-declaration
/ private-type-declaration

 full-FLUX-
declaration

::= FLUX’SYMBOL identifier [discriminant-part]
 is FLUX-definition ;

 FLUX-definition ::= enumeration-definition
/ real-type-definition
/ record-type-definition
/ derived-type-definition
/ integer-type-definition
/ array-FLUX-definition
/ access-type-definition

3.3.2. SUBFLUX- ::= SUBFLUX’SYMBOL identifier is SUBFLUX-indication ;

 39 Savoysky, 1983. Eléments théoriques pour la description de systèmes automatiques. Thèse de Doctorat d’Etat, Univ.

Pierre et Marie Curie, Paris-6, 1983.
 40 Goldsack and al, 1985: xvii.
 41 Alsys, 1983: ANSI/MIL-STD 1815 A.

Appendixes

System Modelling 64

declaration
 SUBFLUX-

indication
::= FLUX-mark [constraint]

 FLUX-mark ::= « FLUX »-name
/ « SUBFLUX »-name

3.5.1. enumeration-
FLUX-definition

::= (enumeration-literal-specification
 {, enumeration-literal-specification })

3.6. array-FLUX-
definition

::= unconstrained-array-definition
/ constrained-array-definition

 unconstrained-
array-definition

::= array (index-subtype-definition
 {, index-subtype-definition})
 of component-SUBFLUX-indication

 constrained-
array-definition

::= array index-constraint
 of component-SUBFLUX-indication

 index-SUBFLUX-
definition

::= FLUX-mark range « »

3.8.1. incomplete-FLUX-
declaration

::= FLUX’SYMBOL identifier [discriminant-part]

3.9. MORPHOLOGICAL-
part

::= {basic-declaration-item}{later-declaration-item}

 basic-
declaration-item

::= basic-declaration
/ representation-clause
/ use-clause

 later-
declaration-item

::= body
/ DEVICE-declaration
/ SYSTEM-declaration
/ PROCESS-declaration
/ generic-declaration
/ use-clause
/ generic-instantiation

 propoer-body ::= DEVICE-body
/ SYSTEM-body
/ PROCESS-body

4.4. relation ::= simple expression [relational-operator simple-expression]
/ simple expression [not] in range
/ simple expression [not] in FLUX-mark

5.1. BEHAVIOUR ::= GROUP {GROUP}
 ACTION ::= {label} simple-ACTION

/ {label} compound-ACTION
 simple-ACTION ::= null-ACTION

/ assignment-ACTION
/ procedure-call-statement
/ exit-statement
/ return-statement
/ goto-statement
/ EXCHANGER-call-ACTION
/ delay-ACTION
/ ORDERED-ACTION
/ raise-statement
/ code-statement

 compound-ACTION ::= if-ACTION
/ case-ACTION
/ ITERATIVE-ACTION
/ block-statement
/ EXCHANGE-ACTION
/ select-ACTION

 null-ACTION ::= null S
5.2. assignment-

ACTION
::= « variable »-name

 [PREPOSITION-PART] TIME-OPERATOR’SYMBOL expression S
5.3. if-ACTION ::= if condition then

 BEHAVIOUR
 {elsif condition then BEHAVIOUR}
 [else BEHAVIOUR]
 endif S

5.4. case-ACTION ::= case expression is
 case-ACTION-alternative {case-ACTION-alternative}
 end case S

 case-ACTION-
alternative

::= when choice {/ choice} (BEHAVIOUR

5.5. ITERATIVE-ACTION ::= [ITERATIVE-simple-name :]
 [iteration-scheme] ITERATION’SYMBOL
 BEHAVIOUR
 end ITERATION’SYMBOL [simple-name] S

6.1. DEVICE-
declaration

::= DEVICE-specification

 DEVICE-
specification

::= procedure identifier [formal-part]
/ function designator [formal-part] return FLUX-mark

 parameter-
specification

::= identifier list : mode-FLUX-mark [:= expression]

6.3. DEVICE-body ::= DEVICE-specification is [MORPHOLOGICAL-part]

 Appendixes

 System Modelling 65

 begin BEHAVIOUR
 [exception
 exception-handler
 {exception-handler}]
 end designator ;

6.4. actual-parameter ::= expression
/ « variable »-name
/ FLUX-mark (« variable »-name)

9.1. PROCESS-
declaration

::= PROCESS-specification

 PROCESS-
specification

::= PROCESS’SYMBOL [FLUX’SYMBOL] identifier
 [is {EXCHANGER-declaration}
 {representation-clause}
 end[« PROCESS »-simple-name]]

 PROCESS-body ::= PROCESS’SYMBOL body « PROCESS »-simple-name is
 [MORPHOLOGICAL-part]
 begin BEHAVIOUR
 [exception
 exception-handler
 {exception-handler}]
 end « PROCESS »-simple-name ;

9.5. EXCHANGER-
declaration

::= ECHANGER’SYMBOL identifier [(discrete-range)]
 [formal-part] ;

 EXCHANGER-call-
ACTION

::= « EXCHANGER »-name [actual-parameter-part] S

 EXCHANGER-ACTION ::= ECHANGE’SYMBOL « EXCHANGER »-simple-name
 [(EXCHANGER-index)][formal-part]
 [do
 BEHAVIOUR
 end [« EXCHANGE »-simple-name]] S

 EXCHANGER-index ::= expression
9.6. delay-ACTION ::= delay simple-expression S
9.7. select-ACTION ::= selective-wait

/ conditional-EXCHANGER-call
/ timed-EXCHANGER-call

9.7.1. selective-wait ::= select
 select-alternative
 {or
 select-alternative}
 [else BEHAVIOUR]
 end select S

 select-
alternative

::= EXCHANGE-alternative
/ delay-alternative
/ terminate-alternative

 EXCHANGE-
alternative

::= EXCHANGE-ACTION [BEHAVIOUR]

 delay-
alternative

::= delay-ACTION [BEHAVIOUR]

9.7.2. conditional-
EXCHANGER-call

::= select
 EXCHANGER-call-ACTION
 [BEHAVIOUR]
 else
 [BEHAVIOUR]
 end select S

10.2. body-stub ::= DEVICE-specification is separate ;
/ SYSTEM’SYMBOL body « SYSTEM »-simple-name is separate ;
/ PROCESS’SYMBOL body « PROCESS »-simple-name is separate ;

13.1. representation-
clause

::= FLUX-representation-clause
/ address-clause

 FLUX-
representation-
clause

::= lenght-clause
/ enumeration-clause
/ record-representation-clause

IV.4 Metarules

 ACTION : STATEMENT,GROUP_ITEM,LAST_GROUP_ITEM
 BASIC_ORDER : [[PREPOSITION_PART] VERB_PART]
 GROUP : STATEMENT,[{GROUP_ITEM} LAST_GROUP_ITEM]
 ORDERED_ACTION : BASIC_ORDER,BASIC_ORDER (ORDERED_ACTION),BASIC_ORDER name
 PREPOSITION_PART : {PREPOSITION’SYMBOL [expression]}
 S : STATEMENT_SEPARATOR,GROUP_ITEM_SEPARATOR,

LAST_GROUP_ITEM_SEPARATOR
 VERB_PART : COMMAND’SYMBOL,TIME_OPERATOR’SYMBOL,OTHER_OPERATOR’SYMBOL

Appendixes

System Modelling 66

IV.5 Rules of meta-production

 COMMAND’SYMBOL : abort initiate,run
 DEVICE : subprogram device,subsystem
 DEVICE’SYMBOL : procedure,function device,subsystem,component,

binder, adapter
 EXCHANGE : accept receive,send,connect
 EXCHANGE’SYMBOL : accept receive,send,connect
 EXCHANGER : entry receiver,sender,connector
 EXCHANGER’SYMBOL : entry receiver,sender,connector
 FLUX : type category,flux
 FLUX’SYMBOL : type category,flux
 GROUP_ITEM : action
 GROUP_ITEM_SEPARATOR : ,
 ITERATIVE : loop repeat
 ITERATIVE’SYMBOL : loop repeat
 LAST_ACTION : statement action
 LAST_GROUP_ITEM : action
 LAST_GROUP_ITEM_SEPARATO

R
: ;

 MORPHOLOGICAL : declarative morphological
 OPERATOR’SYMBOL : hold,sample,translate
 PREPOSITION’SYMBOL : since,to,at,until
 PROCESS : task fonctor,process
 PROCESS’SYMBOL : task fonctor,process
 REERENCE’SYMBOL : pragma model
 REFERENCE : pragma model
 STATEMENT : statement
 STATEMENT_SEPARATOR : ;
 SUBFLUX : subtype subcategory,subflux
 SUBFLUX’SYMBOL : subtype subcategory,subflux
 SYSTEM : package system
 SYSTEM’SYMBOL : package system
 TIME_OPERATOR’SYMBOL : hold,sample,translate

IV.6 Tutorial for expressing a behaviour

The notions developed in this section were presented at different states of progressions in some
IFAC/IFIP workshops on real-time systems and published by the IFAC. A more complete and achieved
presentation was first given in French, in the thesis of the author, and was after inserted in a report of a study
group, submitted to the Commission of the European Communities. Most of the comments thereafter are ex-
tracted from this report.

IV.6.1 General conventions

First, a basic distinction between the notion of « behaviour » and that of « sequence of state-
ments » must be done. Assume the following sequence written in Ada:

 Example 40: Measure:= Sample(Voltage);
 accept Output (Measure: out Pulse);

This sequence is assumed to belong to the description of a concrete-process command ex-
pressed, say in the form of a control program; it defines two of the statements of this program, to be executed in
the order in which they are written. Now, assume a quite similar expression in the description language Dad:

 Example 41: Measure:= sample Voltage ,
 send Output (Measure: out Pulse);

 Appendixes

 System Modelling 67

Under the convention we propose, this text no longer belongs to the description of the con-
crete-process command but to the description of a group of possible actions of the concrete process itself . We
describe in this example how the element Measure is emitted as it is produced. For this purpose we write, not
two statements that are runable sequentially, but two relationships, simultaneously true, between the interactive
elements of a system that exists continuously in time. We now present the essential conventions chosen for Dad,
with the understanding that this treatment does not claim to be exhaustive.

 (I) Any behaviour is a sequence of one or more different groups of actions ordered in time; their
expressions are separated by semi-colons.

 (II) Every group is a set of one or more concurrent actions; the expression of actions within a
group are separated by commas.

 Example 42 begin
 -- this is the first group of parallel actions:
 Measure(1):= sample Voltage(1),
 Measure(2):= sample Voltage(2),
 initiate Measures_Edition;
 -- This is the second group following in time the previous one:
 Measure(1):= sample Voltage(1),
 Measure(2):= sample Voltage(2),
 end;

We will use the qualifiers « descendent » and « parent » in order to situate reciprocally the
groups and actions which may be recursively embedded.

IV.6.2 Real-Time

Any element of a system, and in consequence the system as a whole, is intended to function:
the « action » is the expression specifying its possible ways of functioning. Any element implies the existence of
a first form of modelling, based on a substrate space (see definition: page 29) of which each element defines, up
to a translation in time, a functioning of the represented element of the system. Specifying all the possible
functionings of this element therefore consists of localising its first model in time by a command and possibly,
of specifying any modification made by an operator to this model at the amount of localisation. An action be-
longs to a group and any group belongs to the behaviour of an element, itself activated by at least one action,
except for the system as a whole.

 A) Command, significant instant

The localisation in time of a group of actions in a behaviour or of an action in a group is
specifying by a « command », sometime implicit. Once again, we use the first form of modelling (category) to
specify its use.

First, let us consider a single action.

 Example 43: at T_Start run X;

X is a part of a system; X is represented by a category C. Each element of the space, subjacent
to the definition of the category has a time domain; their reunion is the domain of X. Hence, any definition of
such a category C implies the existence of a time axis θ intrinsic to that item and supporting the domain of X; let
0(θ) the origin of this axis. A command localises the category C in time; the result is a commanded action; then
the command localises 0(θ) on the time axis T associated with the parent action of the commanded action; the
instant tc of localisation on this axis T is known as the instant of command. Progressing in this way, the domain
of each activated part X of the system is situated on the time axis associated with the whole system which
represents the absolute time. The lower bound of this domain is the instant of activation; the upper bound is the
instant of inhibition. In the example 43, T_Start is the instant of command and the instant of activation; the
instant of inhibition is generally the instant of the normal end of X. The instant of activation may be different of
the instant of command like in the example 44 thereafter.

Let us now consider a group of actions activated with the same command. The instant of acti-
vation of the group is the lowest bound of the different associated domains and the instant of inhibition is the
latest of their upper bounds.

The instant of activation and the instant of inhibition of a group of actions are the significant
instants of this group.

Appendixes

System Modelling 68

 B) Operator

The localisation in time is often accompanied by modifications of the model representing
modifications of temporal properties of the part of the system; these modifications are specified by an operator.
They may concerns the specification of the instants of activation and inhibition.

 Example 44: at T_Start run (since T_1 until T_2 sample X);

 C) Critical and free time-part of an action

This dependency among groups and actions, previously qualified as « descendent » or
« parent », implies relationships between significant instants. The distinction between a parent entity and its
descendent entities, together with the definition of the time relations among them, depends on the conventional
meaning we attach to the terms used in their expressions: we examine these conventions in the paragraph that
follows. We firs posit the following conventions:

 (I) The intrinsic time axis of the system as a whole is chosen as the absolute axis; its origin is the
absolute origin. This origin represents the instant of command for activating the entire system.
We state that this command at the highest level is always implicit

 (II) Let be a sequence of groups of actions embedded in a parent action. For the first group, the
instant of command and of activation is the instant of activation of the parent action. For any
other group the instant of command and of activation is the end of inhibition of the critical part
of the preceding group.

 (III) For all action produced by a single parent group, the instant of command, in the absence of any
condition or of any specification on this instant, is the instant of activation of the group. The
instants of activation and of inhibition depend of the conventional meaning we attach to the
terms used in the action expression.

 (IV) Any action has a portion that is critical for its parent group and which begins at the instant of
command; its normal duration, in the absence of inhibition of the parent action by an abort, is
the by the meaning of the terms used in its expression; the instant that is the latest of all the
ends of the critical portions of actions having the same parent group sets the earliest instant of
normal inhibition of that parent group. Note that the duration of this critical portion may be
null.

 (V) Any critical portion may be followed by a free portion. The instant at which the free portion
begins is the instant at which the critical portion preceding it ends; the instant at which it
normally ends, in the absence of inhibition of the parent action by abort, is set by the meaning
of the terms used in its expression.

 (VI) The inhibition of an action by abort implies the recursive inhibition of the descendent or de-
rived groups and actions that would not yet normally inhibited. Any free portion is without
effect upon the instant of normal inhibition of the parent group.

IV.6.3 Creation and modification of an active element

The purpose is to specify the production of new elements in the system and to active these new
elements .

The « assignment_ACTION » rule is used for this purpose. The first member designates
the element created or modified. The second member specifies a combination of elements that are already active
and of which the significant instants are already determined.

IV.6.4 Simple action

The purpose of these expressions is to activate the elements of system by ordering them, and,
possibly, to transform them.

These expressions are all derived from the rules of metaproduction proposed for the
« ORDERED_ACTION » The expressions obtained by the use of this rule are extensions of Ada, except for the
expression « abort-statement ». For each action, the significant instants and the bound between the critical
and free portions result from the meaning attached by convention to the term used.

 Appendixes

 System Modelling 69

We distinguish basically two kinds of simple actions: the triggered action and the on/off ac-
tion.

 A) Triggered action

The expression of a triggered action uses basically the command « initiate » preceding the
name of the element which is activated.

 Example 45: initiate Device;

The instant of activation is the instant of command. The instant of inhibition is the instant of
normal end of functioning of the activated element or the instant of an abort concerning it. The triggered action
is entirely free for its parent and for the following action in a sequence.

The operator initiate may be implicit. As well the expression « Device » is equivalent to the
expression « initiate Device ».

 Example 46: initiate Device ,
 initiate Other_Device;

 Example 47: initiate Device;
 initiate Other_Device;

Let us note that in the examples 46 and 47 above, the instant of command of the second action
is equal to the instant of command of the first action.

 B) On/off action

The expression of a on/off action uses basically the command « run » preceding the name of
the element which is activated.

 Example 48: run Device;

 Example 49: run Device;
 run Other_Device;

 Example 50: run Device ,
 run Other_Device;

The instant of activation is the instant of command. The instant of inhibition is the instant of
normal end of functioning of the activated element or the instant of an abort concerning it. The on/off action is
entirely critical for its parent and for the following action in a sequence.

In the example 49 the instant of command and of activation of the second action is the end of
the preceding. In the example 50 the two actions are parallel and their respective instants of command and of
activation are equal.

IV.6.5 Synchronisation of behaviours

 A) Exchange action

The exchanges actions are used for that purpose. An exchange action may involves a deriva-
tive action. The instant of command (receive/send) is the instant of activation of the parent group. The instant of
activation is the instant of command. The instant of inhibition is at the earlier of:

 (I) the instant of inhibition of the parent group by abort,
 (II) the latest end of the exchange of a maximum form for each element of the formal list.

The exchanger is required to recognise a form in time for each of the element exchanged de-

fined in the formal lit. The formal list specifies, for each element exchanged, a category model; this model de-
termines various possible forms for each element exchanged which are the elements of the substrate space. Each
element of the substrate space has an associated time interval which is its domain. The element having a domain
of which the upper bound is less the upper bound of all other domains is called a minimum form; cor-
respondingly one can define a maximum form. For each exchanger action, the instant of activation of the de-
rivative action is considered ion addition to the significant instant: this instant ends the minimum duration

Appendixes

System Modelling 70

needed to exchange a minimum form for each element of the formal list. In general, the starting time of an ex-
change and the instant which ends the exchange of a minimum differ from one element exchanged to another;
we agree finally that the exchange of an element continues after the exchange of a minimum form, but ceases as
soon as the exchange of its maximum form ends. The exchange of this element can then no longer be repeated
without a new command.

The exchange action is totally critical for the parent group.

 B) Derivative (do) action

The instant of command is the instant of derivative activation of the exchange action; the in-
stant of activation is the same as the foregoing; the instant o inhibition is, at the earliest:

 (I) the instant of inhibition by abort, of the parent action group of the exchanger group,
 (II) the instant of inhibition of its last descendant group.

The derivative action is free for the exchange action and for the parent group of the exchanger
action.

 Appendixes

 System Modelling 71

V EXAMPLE OF HIGH LEVEL DESCRIPTION: A WORK PLANT

V.1 General

This simple example was designed by the EWICS42 during the years 80s in order to check the
features of descriptions tools and methodologies used in industrial control.

In this example, each primary morphology introduces a list of descendent items which may be,

 - either described in the same way, with the same language,
 - or described differently.

The « use clause » is available in order to point at these description. This clause is not
presented in this example.

V.2 Fisrst level of analyse

process Weighing_Mixing_System is
 receiver Feed (x : in Power);
 receiver Start (x : in Pulse);
 receiver Stop (x : in Pulse);
 sender issue (x : out Produce);
end Weighing_Mixing_System;

process body Weighing_Mixing_System is
 process Tank_A;
 process Tank_B;
 process Store;
 process Weight_Unit;
 process Mixer;
 process Control;

 binder Feeder
 binder Status;
 binder Command;
 binder Network;
 binder Fluid;
 binder Solid;

begin

 receive Feed (Energy : in Power)
 do
 repeat
 receive Start (P : in Pulse)
 do
 initiate Feeder;
 initiate Tank_A, Tank_B, Store, Weight_Unit, Mixer, Control,
 initiate Status, Command, Network, Fluid, Solid;
 end Start;
 receive Stop (P : in Pulse);
 abort Tank_A, Tank_B, Store, Mixer, Control,
 abort Status, Command, Network, Fluid, Solid;
 abort Feeder;
 end Stop;
 end repeat;
 end Feed;

end Weighing_Mixing_System;

 42 European Workshop for Industrial Computer System. This Workshop was the European branch of the Purdue

Workshop.

Appendixes

System Modelling 72

-- Analysis, 1st level, visible morphologies

process Tank_A is
 receiver Feed (W : in Power);
 sender Status (S : out Level);
 sender Valve (F : out Fluid_A);
 receiver Command (P : in Raising_Edge);
end Tank_A;

process Tank_B is
 receiver Feed (W : in Power);
 sender Status (S : out Level);
 sender Valve (F : out Fluid_B);
 receiver Command (P : in Raising_Edge);
end Tank_B;

process Store is
 receiver Feed (W : in Power);
 sender Status (S : out Level);
 sender Gate (B : out Bricks);
 receiver Command (P : in Raising_Edge);
 sender Network (D : out Data);
end Store;

process Weight_Unit is
 receiver Feed (W : in Power);
 sender Status (S : out Level);
 receiver Before_Weighing (F : in Fluid);
 sender After_Weighing (F : out Fluid);
 connector Network (D : inout Data);
 receiver Command (P : in Raising_Edge);
end Weight_Unit;

process Mixer is
 receiver Feed (W : in Power);
 sender Status (S : out Level);
 sender Up_Limit (HL : out Level);
 sender Down_Limit (DL : out Level);
 receiver All (X : in Produce);
 sender issue (X : out Produce);
 receiver Up (P : in Raising Edge);
 receiver Down (P : in Raising_Edge);
end Mixer;

process Control is
 receiver Status(1..16) (S : in Level);
 connector Network (D : inout Data);
 sender Command(1..16)(P : out Pulse);
end Control;

binder Feeder is
begin
Tank_A.Feed :=Weighing_Mixing_System. Feed,
Tank_B.Feed :=Weighing_Mixing_System. Feed,
Store.Feed :=Weighing_Mixing_System. Feed,
Weight_Unit.Feed:=Weighing_Mixing_System. Feed,
Mixer.Feed :=Weighing_Mixing_System. Feed,
end Feeder;

binder Status is
Control.Status(1):=Tanker_A.Status,
Control.Status(2):=Tanker_B.Status,
Control.Status(3):=Store.Status,
Control.Status(4):=Weight_Unit.Status,
Control.Status(5):=Mixer.Status,
Control.Status(8):=Mixer.Up_Limit,
Control.Status(9):=Mixer.Down_Limit,
end Status;

binder Command is
Tanker_A.Command :=Control.Command(1),
Tanker_B.Command :=Control.Command(2),
Store.Command :=Control.Command(3),
Weight_Unit.Command :=Control.Command(4),
Mixer.Command :=Control.Command(5),
Mixer.Up :=Control.Command(8),
Mixer.Down :=Control.Command(9),

 Appendixes

 System Modelling 73

end Command;

binder Network is
Control.Network :=Store.Network,
Control.Network :=Weight_Unit.Network,
end Network;

binder Pipes is
Weigh_t_Unit.Before_Weighing :=Tanker_A.Valve,
Weigh_t_Unit.Before_Weighing :=Tanker_B.Valve,
Mixer.All :=Weight_Unit.After_Weighing,
Weighing_Mixing_System.Issue :=Mixer.Issue,
end Pipes;

binder Belt is
Mixer.All :=Store.Gate,
end Belt;

V.3 Second level of analyse

process body Control is

flux High ;
flux Down ;
flux Bottom_Up ;
flux Top_Down ;
subflux Two is Data;
subflux A is Data;
subflux AB is Data;
P1, P2 : Pulse ;

begin

-- A check and a reset of all the devices must preceed the following phase.
-- The check and reset phase is not described in this simplified example.

repeat

 -- Tank_A.Valve opening
 -- Trigger for Tank_A.Valve opening :
 send Command(1) (P : out Pulse);

 -- Weighing Fluid_A
 receive Status (1) (s1 : in Bottom_Up)
 do
 receive Network (x : in A) -- Waiting for Fluid_A as required
 do
 send Command(1) (P : out Pulse); -- Trigger for Tank_A.Valve closing
 end Network;
 end Status;
 receive Status(1) (s1 : in Top_Down); -- Waiting for Tank_A closing

 -- Tank_B.Valve opening
 send Command(2) (P : out Pulse); -- Trigger for Tank_B.Valve opening

 -- Weighing Fluid_B
 receive Status (2) (s2 : in Bottom_Up)
 do
 receive Network (x : in AB) -- Waiting for Fluid_B as required
 do
 send Command(2) (P : out Pulse); -- Trigger for Tank_B.Valve closing
 end Network;
 end Status;
 receive Status(2) (s2 : in Top_Down); -- Waiting for Tank_B closing

 -- Mixing Fluid_A and Fluid_B
 send Command(5) (P : out Pulse), -- Trigger for Mixer starting
 send Command(3) (P : out Pulse), -- Trigger
 -- for Weight_Unit
 -- after_Weighing opening

Appendixes

System Modelling 74

-- Adding two Bricks
 send Command(3) (P : out Pulse); -- Triger for Store.Gate opening
 receive Network (x : in Two)
 do
 send Command(3) (P : out Pulse); -- Trigger for Store.Gate closing
 end Network;

 -- Mixing Fluids and Bricks
 begin
 P2 := translate(Timing) P1,
 send Command(5) (P2 : out Pulse);
 end

 -- Mixer emptying
 send Command(10) (P : out Pulse)
 receive Status(10) (s10 : in Down)
 do
 send Command(9) (P : out Pulse);
 end Status;
 receive Status(9) (s09 : in UP);
 end repeat;
end Control;

process body Tank_A is

flux Power;
flux Level;
flux Fluid_A;
flux Raising_Edge;
subflux On is Level;
subflux Off is Level;
S : Level;

begin

 receive Feed (W : in Power),
 S := Off,
 send Status (S : out Level),
 repeat
 receive Valve (X : in Raising_Edge)
 do
 S := On,
 end Valve;
 receive Valve (X : in Raising_Edge)
 do
 S := Off,
 end Valve;
 end repeat;
end Tank_A;

 Appendixes

 System Modelling 75

VI EXAMPLE OF LOW LEVEL DESCRIPTION: AN ANALOG TO DIGIT CONVERTER

VI.1 General

(to be completed later).

VI.2 Fisrst level of analyse

process ADC is

 receiver Voltage (V : in Signal) ;
 receiver Analog (A : in Signal) ;
 receiver Trigger (Start : in Raising_Edge) ;
 sender Result (Word : out Parallel_Levels) ;
 sender Status (Busy : out Bivalent, Fault : out Bivalent) ;

end ADC ;

process body ADC is

 flux Signal ;
 subflux Level is Signal ;
 subflux Pulse is Signal ;
 subflux Low is Level;
 subflux High is Level;
 subflux Null is Level;
 subflux Raising_Edge is Pulse;
 flux Bivalent is (Low, High) ;
 flux Parallel_Levels is array (0..7) of Level ;

 receiver Stop1 (Over : in Pulse) ;
 receiver Stop2 (End : in Pulse) ;
 sender Reset (R : in Pulse) ;
 process Compare ;
 process DAC ;
 process Counter ;
 process Pulse_Generator ;
 process Store ;

Appendixes

System Modelling 76

begin

 receive Voltage (V : in Voltage)
 do

 repeat
 receive Trigger (Start : in Pulse)
 do
 initiate Compare, DAC, Counter, Pulse_Generator, Store,
 send Status (Busy : out High, Fault : out Low) ;
 -- Busy without failing
 send Reset (R : out Pulse) ;
 for I in (0..7)
 loop
 Word(I):= Low,
 end loop,
 send Result (Word : out Parallel_Levels),
 end Trigger ;

 receive Analog (A : in Signal),
 send Result (Word : out Signal),
 select
 receive Stop1 (Over : in Pulse) ;
 do
 send Status (Busy : out High, Fault : out High) ;
 -- Busy and failing
 abort DAC, Counter ;
 end Stop1
 or
 receive Stop2 (End : in Pulse)
 do
 send Status (Busy : out Low, Fault : out Low) ;
 -- Normal end
 send Result (Word : out Parallel_Levels),
 abort Compare, DAC, Counter, Pulse_Generator, Store ;
 end Stop2 ;
 end select ;
 end repeat ;
end Voltage ;

end ADC ;

 Appendixes

 System Modelling 77

VI.3 Second level of analyse

process Compare is

 connector Plug(1..4) (S : inout Signal) ;

end Compare ;

process body Compare is

 flux Pulse ;

begin

 receive Plug(1) (Ss1 : in Signal) –- receives the voltage supply
 do
 receive Plug(2) (Ss2 : in Signal) –- receives the analog scale
 do
 receive Plug(3) (Ss3 : in Signal) –- receives the analog signal
 do

 repeat
 Sp1 := sample Ss1,
 Sp2 := sample Ss2,
 Sp3 := sample Ss3,
 if
 Sp2>Sp3
 then
 send Plug(4) (Sp1 : out Pulse) ;
 -- This pulse, sent to Stop2, indicates the normal end
 endif ;
 end repeat ;
 end Plug ;
 end Plug ;
 end Plug ;

end Compare ;

process DAC is

 receiver Voltage (V : in High) ;
 receiver Digit_DAC (Digit : in Parallel_Levels) ;
 sender Analog_DAC (Scale : out Analog_Scale) ;

end Dac ;

process body DAC is

 subflux Level is Signal ;
 subflux Low is Level;
 subflux High is Level;
 flux Parallel_Levels is array (0..7) of Level ;

 subflux Analog_Scale is Signal ;

begin

 receive Voltage (V : in High)
 do
 repeat
 receive Digit_DAC (Digit : in Parallel_Levels)
 do
 send Analog_DAC (Scale : out Analog_Scale) ;
 end Digit_DAC ;
 end repeat ;
 end Voltage ;

end DAC ;

Appendixes

System Modelling 78

process Counter is

 receiver Voltage (V : in Signal) ;
 receiver Trigger (Start : in Raising_Edge) ;
 receiver Reset (R : in Raising_Edge) ;
 receiver Clock (String : in Signal) ;
 sender Binary_Value (Word : out Parallel_Pulses) ;
 sender Full_Scale (Overflow : out Pulse) ;

end Counter ;

process body Counter is

 flux Pulse ;
 subflux Raising_Edge is Pulse ;
 flux Level ;
 flux Parallel_Pulses is array (0..8) of Pulse ;
 flux Parallel_Levels is array (0..8) of Level ;
 sender Reset_General (Parallel_R : out Parallel_Pulses) ;
 sender Reset_Element(0..8) (Single_R : out Pulse) ;
 sender Binary_Element(0..7) (Bit : out Level) ;
 process Flip_Flop (0..8) ;

 adapter Share_Out ;
 adapter Word_Integrator ;
 binder Voltage_Supply ;
 binder Reset ;
 binder Binary_Count ;
 binder Binary_Store ;

begin

 for I in (0..8)
 loop
 initiate Flip_Flop(I) ,
 end loop ;
 receive Voltage (V : in High)
 do
 receive Trigger (Start : in Raising_Edge)
 do
 receive Reset (R : in Raising_Edge)
 do
 send Reset_General (Parallel_R : out Pulse) ;
 receive Clock (String : in Signal),
 send Binary_Value (Word : out Parallel_Pulses),
 send Full_Scale (Overflow : out Pulse),
 end Reset ;
 end Trigger ;
 end Voltage ;

end Counter ;

process Pulse_Generator is

 receiver Voltage (V : in High) ;
 sender Clock (S : out Signal) ;

end Pulse_Generator ;

process body Pulse_Generator is

 subflux Pulse_and_Delay is Signal ;

begin

 receive Voltage (V : in High)
 do
 repeat
 S := Pulse_and_Delay,
 send Clock (S : out Signal) ;
 end repeat
 end Voltage ;

end Pulse_Genarator ;

 Appendixes

 System Modelling 79

process Store is

 receiver Voltage (V : in High) ;
 sender Memory (Word : out Parallel_Levels) ;
 receiver Reset (R : in Raising_Edge) ;

end Store ;

process body Store is

 subflux Level is Signal ;
 subflux Low is Level ;
 subflux Bottom_Up is Signal ;
 subflux Top_Down is Signal ;
 subflux Nothing is Signal ;
 flux Change is (Bottom_Up, Top_Down, Nothing) ;
 subflux Raising_Edge is Signal ;
 flux Parallel_Levels is array (0..9) of Level ;
 flux Parallel_Changes is array (0..9) of Change ;

 receiver Binary_Value (W : in Parallel_Changes) ;

begin

 receive Voltage (V : in High) ;

 do
 receive Reset (R : in Raising_Edge) ;
 do
 for I in (0..7)
 loop
 Word(I) := Low,
 end loop,
 send Memory (Word : out Parallel_Levels),
 end Reset ;
 repeat
 receive Binary_Value (W : in Parallel_Changes) ;
 do
 for I in (0..7)
 loop
 case W(I)
 when Top_Down =>
 Word(I) := Low,
 when Bottom_Up =>
 Word(I) := High,
 others =>
 nill,
 end case
 end loop
 send Memory (Word : out Parallel_Levels) ;
 end repeat,
 end Voltage
end Store ;

Appendixes

System Modelling 80

VI.4 Third level of analyse

process Flip_Flop is

 receiver Voltage (V : in High) ;
 receiver Reset (R : in Raising_Edge) ;
 sender Binary_Element (0..1) (Bit : out Pulse) ;
 receiver Enter (Edge : in Raising_Edge) ;

end Flip_Flop ;

process body Flip_Flop(0..8) is

 subflux Pulse is Signal ;
 subflux Raising_Edge is Pulse ;
 subflux Zero is Low ;
 subflux One is High ;
 flux Status is (Zero, One) ;
 Value: Status,

begin

 receive Voltage (V : in High) ;
 do
 receive Reset (R : in Raising_Edge)
 do
 Value := Zero,
 Bit0 := sample Zero,
 Bit1 := sample One,
 send Binary_Element(0) (Bit0 : out Pulse),
 send Binary_Element(1) (Bit1 : out Pulse),
 end Reset ;
 repeat
 receive Enter (Edge : in Raising_Edge)
 do
 case Value is
 when Value=Zero =>
 Value := One,
 Bit0 := sample Zero,
 Bit1 := sample One,
 send Binary_Element(0) (Bit0 : out Pulse),
 send Binary_Element(1) (Bit1 : out Pulse),
 when others =>
 Value := Zero,
 Bit0 := sample One,
 Bit1 := sample Zero,
 send Binary_Element(0) (Bit0 : out Pulse),
 send Binary_Element(1) (Bit1 : out Pulse),
 end case ;
 end Enter ;
 end repeat ;
 end Voltage ;

end Flip_Flop ;

 Appendixes

 System Modelling 81

-- Links within ADC

binder Card is
begin

 Compare.Plug(1) :=ADC.Compare(1),
 Compare.Plug(2) :=ADC.Analog,
 Compare.Plug(3) :=DAC.Analog_DAC,
 DAC.Voltage :=ADC.Voltage,
 Counter.Voltage :=ADC.Voltage,
 Pulse_Generator.Voltage :=ADC.Voltage,
 Store.Voltage :=ADC.Voltage,
 Counter.Reset :=ADC.Reset,
 Counter.Trigger :=ADC.Trigger,
 Counter.Clock :=Pulse_Generator.Clock,
 DAC.Digit_DAC :=Counter.Binary_Value,
 Store.Digit_Store :=Counter.Binary_Value,
 ADC.Stop1 :=Counter.Fullscal,
 ADC.Stop2 :=Compare.Plug(4),
 ADC.Result :=Store.Result,

end Card ;

-- Adapters and links within Counter

adapter Share_Out is
 begin

 Reset_Element (0).Single_R :=Reset_General.Parallel_R(0),
 Reset_Element (1).Single_R :=Reset_General.Parallel_R(1),
 Reset_Element (2).Single_R :=Reset_General.Parallel_R(2),
 Reset_Element (3).Single_R :=Reset_General.Parallel_R(3),
 Reset_Element (4).Single_R :=Reset_General.Parallel_R(4),
 Reset_Element (5).Single_R :=Reset_General.Parallel_R(5),
 Reset_Element (6).Single_R :=Reset_General.Parallel_R(6),
 Reset_Element (7).Single_R :=Reset_General.Parallel_R(7),
 Reset_Element (8).Single_R :=Reset_General.Parallel_R(8),

end Share_Out ;

 adapter Word_Integrator is
 begin

 Binary_Value.Word(0) :=Binary_Element(0).Bit,
 Binary_Value.Word(1) :=Binary_Element(1).Bit,
 Binary_Value.Word(2) :=Binary_Element(2).Bit,
 Binary_Value.Word(3) :=Binary_Element(3).Bit,
 Binary_Value.Word(4) :=Binary_Element(4).Bit,
 Binary_Value.Word(5) :=Binary_Element(5).Bit,
 Binary_Value.Word(6) :=Binary_Element(6).Bit,
 Binary_Value.Word(7) :=Binary_Element(7).Bit,

 end Word_Integrator ;

 binder Voltage_Supply is
 begin

 Flip_Flop (0).Voltage:= Counter.Voltage(0),
 Flip_Flop (1).Voltage:= Counter.Voltage(1),
 Flip_Flop (2).Voltage:= Counter.Voltage(2),
 Flip_Flop (3).Voltage:= Counter.Voltage(3),
 Flip_Flop (4).Voltage:= Counter.Voltage(4),
 Flip_Flop (5).Voltage:= Counter.Voltage(5),
 Flip_Flop (6).Voltage:= Counter.Voltage(6),
 Flip_Flop (7).Voltage:= Counter.Voltage(7),
 Flip_Flop (8).Voltage:= Counter.Voltage(8),

 end Voltage_Supply ;

Appendixes

System Modelling 82

 binder Reset is
 begin

 Flip_Flop (0).Reset:= Counter.Reset_Element(0),
 Flip_Flop (1).Reset:= Counter.Reset_Element(1),
 Flip_Flop (2).Reset:= Counter.Reset_Element(2),
 Flip_Flop (3).Reset:= Counter.Reset_Element(3),
 Flip_Flop (4).Reset:= Counter.Reset_Element(4),
 Flip_Flop (5).Reset:= Counter.Reset_Element(5),
 Flip_Flop (6).Reset:= Counter.Reset_Element(6),
 Flip_Flop (7).Reset:= Counter.Reset_Element(7),
 Flip_Flop (8).Reset:= Counter.Reset_Element(8),

end Reset ;

 binder Binary_Count is
 begin

 Flip_Flop (0).Enter:= Counter.Clock,
 Flip_Flop (1).Enter:= Flip_Flop(0).Binary_Element(0),
 Flip_Flop (2).Enter:= Flip_Flop(1).Binary_Element(0),
 Flip_Flop (3).Enter:= Flip_Flop(2).Binary_Element(0),
 Flip_Flop (4).Enter:= Flip_Flop(3).Binary_Element(0),
 Flip_Flop (5).Enter:= Flip_Flop(4).Binary_Element(0),
 Flip_Flop (6).Enter:= Flip_Flop(5).Binary_Element(0),
 Flip_Flop (7).Enter:= Flip_Flop(6).Binary_Element(0),
 Flip_Flop (8).Enter:= Flip_Flop(7).Binary_Element(0),

 end Local ;

 binder Binary_Store is
 begin

 Counter.Binary_Element (0):= Flip_Flop(0).Binary_Element(1),
 Counter.Binary_Element (1):= Flip_Flop(1).Binary_Element(1),
 Counter.Binary_Element (2):= Flip_Flop(2).Binary_Element(1),
 Counter.Binary_Element (3):= Flip_Flop(3).Binary_Element(1),
 Counter.Binary_Element (4):= Flip_Flop(4).Binary_Element(1),
 Counter.Binary_Element (5):= Flip_Flop(5).Binary_Element(1),
 Counter.Binary_Element (6):= Flip_Flop(6).Binary_Element(1),
 Counter.Binary_Element (7):= Flip_Flop(7).Binary_Element(1),
 Counter.Full_Scale := Flip_Flop(8).Binary_Element(1),
 -- Counter overflow

 end Binary_Store ;

 Appendixes

 System Modelling 83

VII BIBLIOGRAPHY

VII.1 General

i Ayeb (B. el). Toward Systematic Construction of Diagnogstic Systems for Large Industrial
Plants: Methods, Languages, and Tools. in: IEEE Trans. on Knowledge and data Engineering.
Oct. 1994, vol.6, n°5, ISSN 1041-4347. pp.698/712.

ii Battiston (E.), Cindio (F. de), Mauri (G.). OBJSA nets: a class of high-level nets having ob-
jects as domains. in: Advances in Petri nets. Springer-Verlag, Berlin, 1988. pp.20/43. ISBN: 3
540 50580 6.

iii Belli (F.). Model-based construction and implementation-oriented evaluation of complex sys-
tems. in: IFIP Transactions A, vol.A-36. IFIP TC8/WG8.5 Working Conference on System
Engineering in Public Administration. 3-5 March 1993. pp.125/143. ISSN: 0926-5473.

iv Berthomieu (B.), Choquet (N.), Colin (N.), Loyer (B.), Martin (J.M.), Mauboussin (A.). Ab-
stract data nets: combining Petri nets and abstract data types for high level specifications of
distributed systems. in: Seventh European Workshop on Application and Theory of Petri Nets.
Proceedings. Sheffields City Polytech., Sheffield, UK, 1986. p456.

v Beth (t). Algebraic system modelling and Implementation. in: Computer Aided System The-
ory. EUROCAST’91. Second International Workshop. Proceedings. Springer-Verlag, Berlin,
1992. pp.21/31. ISBN: 3 540 55354 1.

vi Conception (Arturo I.), Zeigler (Bernard P.) DEVS Formalism: A Framework for Hierarchical
Model Development. in: IEEE Trans. on Soft. Eng., Vol.14, n°2, febr. 1988. pp.228/241.

vii Dutch National Body. A Framework of Information System Concepts. Working paper.
ISO/IEC TC21 WG3 CSMF. Ottawa meeting, July 1995. (OTT-26).

viii Ehrich (H.-D.). On the theory of Specification, Implementation, and Parametrization of Ab-
stract Data Types. in: J. of the Assoc. for Comp. Mach., vol.29, n°1, jan. 1982. pp.206/227.

ix Ehrich (Hans Dieter). Algebraische Spezifikation abstrakter Datentypen (Algebraic specifi-
cation od abstract data types). Leitfaden und Monographien der Informatik. B.G. Teubner,
Stuttgart, 1989. xp., 236p. ISBN: 3-519-02266-4.

x Ehrich (Hans Dieter). From data types to object types. 41th Workshop On Mathematical As-
pects of Computer Sciences, Magdeburg, 1988. in: Journal of Information Processing and Cy-
bernetics, n°1-2. ISSN: 0863-0593.

xi Ehrich (Hans Dieter). Objects, Object types, and object identification. Categorical methods in
computer science. pp142/156. Berlin, 1988. Springer, Berlin, 1989.

xii Ehrich (H. D.), Goguen (J.A.). A categorical theory of objects as observed processes. Lecture
Notes in Computer Science. Springer, Berlin, 1991. pp.203/208. ISBN: 3-519-02266-4.

xiii Encyclopedia-1993Encyclopedia of Computer Science. 3d edition. Editors: Anthony Ralston,
Edwin D. Reilly. Van Nostrand Reinhold, New York, 1993. ISBN 0-442-27679-6. xxivp.,
1558p. (maj.: 930207).

xiv Gibbs (W. Wayt). Software’s Chronic Chisis. in: Scientific American, sept. 1994, vol 271,
n°3. pp.72/81. ISSN 0036-8733.

xv Goguen (Joseph A.). Sheaf semantics for concurrent interacting objects. International Con-
ference on Symbolic Computation, Zurich, 1990. in: Mahtematical Structures in Computer
Science, n°2, 1992. ISSN: 0960-1295.

xvi Goguen (Joseph A.). Sheaf semantics for concurrent interacting objects. International Con-
ference on Symbolic Computation, Zurich, 1990. in: Mahtematical Structures in Computer
Science, n°2, 1992. ISSN: 0960-1295.

xvii Davis (N.), Dacker (B.), Goldsack (S.J.), Halling (H.), Jarray (J.), Ludewig (J.), McGuettrick
(A.), Page (J.), Pyle(I.), Savoysky (S.). Ada for specification: possiblities and limitations. The
Ada Companion Series. Ed. by S.J. Goldsack. Cambridge Univ. Press, Cambridge, 1985. ISBN
0-521-30853-4. xvi p., 265p.

xviii Gomm (D.), Walther (R.). The distributed termination problem: formal solution and correct-
ness based on Petri nets. in: Aspects and Prospects of Theoretical Computer Science. 6th In-
ternational Meeting of Young Computer Scientists. Proceedings. Springer-Verlag, Berlin,
1990. pp159/168. ISBN: 3 540 53414 8.

Appendixes

System Modelling 84

xix Category Theory Applied to Computation and Control. Edited by G. Goos and J. Hartmanis.
Lecture Notes in Computer Science. Springer-Verlag, Berlin, …, 1975. 246p. ISBN 3-540-
07142-3.

xx Haurat (A.), Piard (F.). The « OLYMPIOS » model: an algebraic specification for modelling
the information system of a manufacturing enterprise. in: 1993 CompEuro Proceedings.
Computer in Design, Manufacturing, and Production. IEEE, Comp. Soc. Press., Los Alamitos,
1993. pp.330/335. ISBN: 0 8186 4030 8.

xxi Hotaka (Ryosuke), Björn (Michael). Data oriented Approach to Business Information Model-
ling. Univ. of Tsukuba, 1993. 19p.

xxii Jensen (K.). An introduction to the theoretical aspects of coloured Petri nets. in: Decade of
Concurrency. Reflections and Perspectives. REX School/Symposium Proceedings. 1-4 June
1993. Springer-Verlag, Berlin, 1994. pp230/272. ISBN 3 540 58043 3.

xxiii Korff (M.). Single pushout transformation of equationally defined graph structures with ap-
plications to actor systems. In: Graph Transformations in Computer Science. International
Workshop Proceedings. 4-8 Jan. 1993. Springer-Verlag, Berlin, 1994. pp.234/247. ISBN: 3
54057787 4.

xxiv Lahdelma (R.). An object-oriented mathematical modelling system.. in: Acta Polytechnica
Scandinavica, Mathematics and Computer Science Series, n°MA66. pp.1/77. ISSN: 0355-
2713.

xxv Lieberherr (Karl, J.), Xiao (Cun). Object-Oriented Software Evolution. in: IEEE transactions
on software engineering. April 1993, vol.19, n°4. (ISSN 0098-5589). pp.313/343.

xxvi McLane (S.), Birkhoff (G.). Algèbre. Tome I. Structures fondamentales. Traduit de l’amé-
ricain par J. Weil. Préface de J. Dieudonné. Nouveau Tirage. Cahiers Scientifiques. Publiés
Sous la Direction De M. Gaston Julia. Fascicule XXXV. Gauthier-Villars, Paris, 1971. xxivp.,
410p.

xxvii McLane (S.), Birkhoff (G.). Algèbre. Tome II. Les grands théorèmes. Traduit de l’américain
par J. Weil. Préface de J. Dieudonné. Nouveau Tirage. Cahiers Scientifiques. Publiés Sous la
Direction De M. Gaston Julia. Fascicule XXXVI. Gauthier-Villars, Paris, 1971. xivp., 344p.

xxviii Najm (E.), Budkowski (S.), Gilot (T.), Lumbroso (L.). General presentation of SCAN. A
distributed system modelling and validation tool. Agence de l’Informatique. Paris la Défense,
France. North-Holland, Amsterdam, 1986. xip., 544p. ISBN: 0 444 87881 5.

xxix Noaks (D. R.), Wood (K.). System modelling for safety and fault analysis using the software
tool NP-Circuit. in: IEE Colloquium on « Structured Methods for Hardware Systems ». Digest
N°1994/110. IEE, London, 1994.

xxx Phoa (W.), Fourman (M.). A proposal categorical semantics for pure ML. in: Automata,
Languages and Programming. 19th International Colloquium Proceedings. Springer-Verlag,
Berlin, 1992. pp.533/544.

xxxi Rattray (C.). The shape of complex systems. Computer Aided System Theory.
EUROCAST’93. Third International Workshop on Computer Aided System Theory Procee-
dings; 22-26 Feb. 1993. Springer-Verlag, Berlin, 1994. pp.72/82. ISBN: 3 540 57601 0.

xxxii Reggio (G.). Event logic for specifying dynamic data types. in: Recent Trends in Data Type
Specification. 8th Workshop on Specification on Abstract Data Types joint with 3rd COMPASS
Workshop. Selected papers. Springer Verlag, Berlin, 1993. pp. 292/309. ISBN: 3 540 556379
2.

xxxiii Savoysky (S.). Description sommaire d'une méthode d'utilisation de l'algèbre multilinéaire
pour la représentation de systèmes. in: Réflexions sur de nouvelles approches dans l'étude des
systèmes. Actes du Coll. org. à Paris, les 10, 11, et 12 juin 1975, par l'Ec. centr. des arts et
man. et l'Ec. nat. sup. de techn. av.,… Association nationale de la recherche technique, Paris,
1975. pp. 177/200.

xxxiv Savoysky (S.). Analysis and description of automatic control system. in: Real Time Pro-
gramming 1980. Proc. of the IFAC/IFIP Workshop. Schloss Retzhof, Leibnitz, Austria, 14-16
April 1980. Ed. by V.H. Haase. Pergamon Press, Oxford,…, 1980. ISBN 0 08 027305 X. pp.
45/55

xxxv Savoysky (S.). The Use of Ada for the Specification of Automata in Civil Engineering. in:
Real Time Programming 1981. Proc. of the IFAC/IFIP Work. Kyoto, Japan, 31 August - 2
Sept. 1981. Pergamon Press, Oxford,…, 1982. ISBN 0-08-027613-X. pp. 129/138.

 Appendixes

 System Modelling 85

xxxvi Savoysky (S.). Specification of exchange mechanisms between elements of industrial systems.
in: IECON’85, Proceedings, Industrial applications of mini, micro, and personnal computers.
San Francisco, Ca., nov. 18-22, 1985., vol.2. IEEE, sl., 1985. IEEE Cat. Numb. 85CH2160-0.
Libr. of Congr. Cat. Numb. 85-60211. pp. 794/799.

xxxvii Sowa (John F.). Knowledge Representation. Logical, Philosophical, ad Computational Foun-
dations. July 17th, 1995. Draft of a book in preparation.423p.

xxxviii Thom (René). La théorie des catastrophes. in: Modèles mathématiques de la morphogenèse.
Chr. Bourgoi Ed., Paris, 1908. pp.81/90.

xxxix Tucker (J.V.), ZUCKER (J.I.). Toward a general theory of computation and specification
over abstract data types. in: Advances in Computing and Information. ICCI’90. International
Conference Proceedings. Springer-Verlag, Berlin, 1990. pp.129/133. ISBN 3 540 53504 7.

xl Tuzhilin (A.A.). Category theory of structural sets with application to mathematical modelling
and systems analysis. in: Mathematical Modelling, vol.7, n°1. pp.27/48. ISSN: 0270-0255.

xli Vries (J.A. de), Breedveld (P.C.), Meindertsma (P.). Polymorphic modelling of engineering
systems. in: International Conference on Bond Graph Modelling ICBGM’93. 1993 Western
Simulation Multiconference. SCS, San Diego (CA), 1993. pp.17/22.

xlii Zhao Xudong, Feng Yulin. Automatic and hierarchical verification for concurrent systems.
in: Journal of Computer Science and Technology (E), vol.5, n°3, pp.241/249. China, 1990.
ISSN: 1000 9000.

VII.2 CSMF, working drafts

CSMF ABQ-010 US Contribution on Abstract Conceptual Schema Language (ACSL) Syntax and Semantics
[SC21/WG3 N1781 Clause 8.2, revised Clause 8.1].

CSMF ABQ-015 OEII (J.L.H.). A Meta Model Transformation approach towards harmonisation in information
systems modelling. Nov. 2, 1994.

CSMF ABQ-024 WIELINGA (Bob) and al. Framework and Formalism for Expressing Ontologies. KACTUS.
Esprit Project 8145. Univ. of Amsterdam, 1994.

CSMF AIX-007 ⇒ ISO/IEC TC97/SC5/WG3
CSMF AIX-008 ⇒ ISO/TC 184/SC4 DIS 10303-11
CSMF AIX-009 ⇒ ISO/IEC JTC1/SC21
CSMF SOU-007 A Data Modelling Facility: JDMF/MODEL-1992 R1.1.

VII.3 Normative documents

AFNOR
CGTI/CN21
F2236

AFNOR CGTI/CN21 F2236. A direct computational language semantics for Part 4 of the
RM-ODP. AFNOR, Paris, 1994/07/05. 12p.

ANSI/MIL-STD
1815 A

ANSI. Reference manual for the Ada® programming language. Alsys, La Celle-Saint-Cloud,
1983.

BSI
 DD 210: 1992

BSI. Guide to A framework for user requirements for Information Technology. Draft for De-
velopment. DD 210: 1992. 23p.

EWOS/ETG
012

EWOS. Guide to profiles for the open system environement. Approved by EWOS/TA (1991)..

IRDS
part 2 93-196

IRDS. Conceptual Schema. Part 2: Modelling Language Analysis. X3H4/93-196. xp., 98p.

IRDS
part 1 93-196

IRDS. Conceptual Schema. Part 1: Conceptual Schema for IRDS. X3H4/936196. xp., 160p.

ISO/IEC
TC97/SC5/WG3
9007

ISO. Concepts and terminology for the conceptual schema and the information base. ISO TR
9007.

Appendixes

System Modelling 86

ISO
TC184/SC4/
WG3
N103

ISO TC184/SC4/WG3. Technical Report on the Semantic Unification Meta-Model. Volume
1: Semantic Unification of Static Models. A technical report of the Dictionary : Methodology
Committee of the IGES/PDE Organization on the application of formal semantics and sym-
bolic logic to the integration and unification of models. Prepared by the Dictionary / Metho-
dology Committee of the IGES / PDES Organization. Version 1.0. October 19, 1992. N103.
124p., Appendix,

ISO
TC184/SC5/
WG4
N116

ISO TC184/SC5/WG4. Industrial Atomation Systems - MAPLE Architecture. Draft of
Committee Draft. for DIS Balloting. May 1995.

ISO/IEC
IS
10746-2

ISO/IEC International Standard 10746-2. Information Technology. Open Distributed Proc-
essing. Reference Model. - Part 2: Foundations. [IUT Recommendation X.902].

ISO/IEC
IS
10746-3

ISO/IEC International Standard 10746-3. Information Technology. Open Distributed Proc-
essing. Reference Model. - Part 3: Architecture. [IUT Recommendation X.902].Draft.

ISO/IEC JTC1
SC22
N 1712

ISO/IEC JTC1 TC 22. N1712. Draft Technical Report for EXTensions for Real-time Ada.
Work Item Number: JTC 1.22.35. ISO/IEC TR 11735. October 30, 1994. 69p.

ISO/IEC JTC1
TSG 1

ISO/IEC JTC1 TSG 1. Standards necessary to define Interfaces for Application Portability.
(IAP). Final report. April 1993. 69p.

ISO/IEC JTC1 N
3095R

ISO/IEC JTC1. Strategic plan for information technology standardisation. A Presentation of
the Strategic Objective, Assumptions, Trnds and Needs. SPRG N31. 1 November1994. 4p.

ISO/IEC
JTC1/SC21
236

ISO/IEC JTC1/SC21. Information Retrieval, Transfer and Management for OSI. N236.

ISO/IEC
JTC1/SC21
8218

ISO/IEC JTC1/SC21. Information Technology. Open Distributed Processing. Reference Mo-
del .- Part 1: Overview and Guide to Use. N8218.

ISO/IEC
JTC1/SC21
8913

ISO/IEC JTC1/SC21. LOTOS. A formal Description Technique Based on the Temporal Or-
dering of Observational Behaviour. Amd 1: G-LOTOS. N8913. 118p.

ISO/IEC
JTC1/SC21
9563

ISO/IEC JTC1/SC21. Information Technology. Open Distributed Processing. Reference Mo-
del. - Part 4: Architectural Semantics. N9563.

ISO/IEC
JTC1/SC21/
WG1

ISO/IEC JTC1/SC21/WG1. Enhancements to LOTOS. Working Draft on Enhancements to
LOTOS. Project 1.21.20.2.3. October 1994.. N1349. Pag. mult.

ISO/IEC
JTC1/SC21/
WG3
1865

ISO/IEC JTC1/SC21/WG3. Conceptual Graphs, A presnetation Language for Knowledge in
Conceptual Models.. WD of Proposed American National Standard. X3 Project N°. 1059-D.
May 10, 1995. N1865.

ISO/IEC
JTC1/SC21/
WG3
1866

ISO/IEC JTC1/SC21/WG3. Knowledge Interchange Format Reference Manual.. WD for an
ANS. N1866.

ISO/IEC
JTC1/SC7/
WG11
 BRI22

ISO/IEC JTC1/SC7/WG11. FULTON (Dr. James A.) Strategy for the Integration of Know-
ledge-Based Engineering Data. Boeing Information and Support Services Research and Tech-
nology. Working Draft 1.2, June 19, 1995. 22p. ISO TC184/SC4/WG5 N234, ISO/IEC
JTC1/SC7/WG11 BRI22. (OTT20).

ISO/TC 184/SC4
DIS 10303-11

ISO/TC184/SC4. Industrial automation systems - Product data representation and exchange -
Part 11: Description method: The EXPRESS language reference manual. XIVp., 110p.
ISO/DIS 10303-11.

SC2 1 N7054 SC21. Basic Reference Model of Open Distributed Processing - Part 2: Descriptive Model.

 87 System Modelling

VIII INDEX

A

Absence of process 26
Action 18; 19
Adapted consistency 39
Adapted interface 39
Analysis 24; 31

B

Behaviour 13; 18
Exhaustive 19
Primary 18

Body 14

C

Category 14
Command 37

Model 37
Component

Actual 21
Formal 21
Occurrence 19
State 19
Typology 21

Condition
Non temporal 35
Temporal 38

Connector 35
Consistency

Adapted 39
Criteria 15
Morphology 39
Normal 39
Physiology 39

Continuity 30
Convergence 30

D

Descendant 22
Descendant-morphology 22
Descendant-physiology 22
Device 12; 18; 24; 31

Model 33; 34; 35
Serial compound one-state 34
Simple one-state 33

Dirac (pulse) 27
Domain 27

E

Element
Limit 31; 32
Minimum 26
Universal 39

Elementary portability 40
Environment 13
Exception 19

Exchange 14
Exhaustive morphology 18

F

Face 17
Facial functionality 17
Family

Substrate states 30
Fonctor 33
Functionality 14

Facial 17
Fundamental space 26

G

Genealogy
Inheritance 22
Parent 22
Root 22

H

Heaviside (step) 27

I

Information technology system 13
Inheritance 22
Input 14
Instantaneous sample 27
Instantaneous value 27
Instantiation 21
Interface

First type 16
Interface Adapted 39
Interface Standard 39
Internal part 18
Interoperability 15
Invariant 14

L

Limit element 31; 32
Limit state 19; 31; 32
Link 36

M

Minimum (element) 26
Model

Command 37
Device 33; 34; 35
Morphology 35
Physiology 37
Produce 35

Module 13
Morphism 32
Morphology 13; 18; 24

Consistency 39
Descendant 22

Appendixes

System Modelling 88

Exhaustive 18
Link 36
Model 35
Non temporal condition 35
Operator 35
Parent 22
Primary 18

N

Neigbourhood 30
Normal consistency 39

O

Observation space 26
Occurrence 19
Operator 35
Oriented portability 40
Output 14

P

Parent 22
Parent-morphology 22
Parent-physiology 22
Part

Internal 18
Visible 17; 18

Physical system 12
Physiology 13; 18; 24

Command 37
Consistency 39
Descendant 22
Exhaustive 19
Model 37
Parent 22
Primary 18
Temporal condition 38

Portability 15
Elementary 40
Reversible 40

Post-condition 14
Pre-condition 14
Primary morphology 18
Procedure 25
Procedure state 32
Process 25; 26; 29

Absence 26
Produce 12; 18; 31

Model 35
Produce (system component) 24

Model 32
Product (algebra) 58
Protomorphology 21
Protophysiology 22
Prototype 21
Pulse

Dirac 27

Q

Quantification 27
Quantified value 27

R

Real time 27
Receiver 35
Reference 26
Reversible portability 40
Root 22

S

Sample 19; 27
Instantaneous 27

Sampling 27
Sender 35
Signal

Binary 27
Dirac 27
Heaviside 27
Pulse 27
Rectangular 27
Step 27

Space
Fundamental 26
Observation 26

Space of values 26
Standard interface 39
State 19

Continuity 30
Convergence 30
Limit 31; 32
Procedure 32
Substrate 30

Step
Heaviside 27

Substrate
Element 29
Space 29

Subsystem 13
Synthesis 24; 31; 36
System

General 12
Information technology 13
Physical 12

T

Time 26
Real 27

Timing-operator 37
Type 21

Instantiation 21
Typology

Component 21

U

Universal element 39

V

Value 26
Instantaneous 27
Quantified 27

Visible part 17; 18

 Biography

 System Modelling 89

BIOGRAPHY

Born in 1933, Serge Savoysky earned his « Licence ès Science » in
1956 and he received his State Engineer degree in 1957 from the « Ecole Nationale
Supérieure de Mécanique et d’Aérotechnique » ; he received later his French State
« Doctorat ès Sciences, Mathématiques » from the « Université Pierre et Marie Curie,
Paris » in 1983. He first entered as engineer in the Flying Trying Centre of the French
Air Forces in 1957. During his military duty, he continued to serve as officer in these
Air Forces (1957/1960), in Algeria. In 1960, he entered a Building Design Office again
as engineer and he introduced in this company the data processing technologies. In 1970
he became the first head of Data Processing Department in the « Laboratoire Central
des Ponts et Chausées », main research centre of the French State Roads and Bridges Laboratories Network.
Since this time until 1992, he managed data processing in this network, mainly for laboratory and worksite
process control, and conducted research in this domain where he met the subject of his doctorate thesis :
Proposal of Theoretical Element for System Description; his personal main interest was the formal description of
industrial systems. During the same time, he taught process control technologies in « Ecole Nationale des
Travaux Publics de l’Etat ». Now retired, he continues to investigate in the field of formal system description
methodologies. He enjoys collecting calculating machines and apparatus and books of the past. He is married
and has two adult children.

Biography

System Modelling 90

